Karboski_K2013.pdf

Media

Part of Distribution of Urban Household Carbon Dioxide Emissions Along a Socioeconomic Gradient of Indianapolis, In

extracted text
 

 

 

 

 

 

 

DISTRIBUTION OF URBAN HOUSEHOLD
CARBON DIOXIDE EMISSIONS
ALONG A SOCIECONOMIC GRADIENT OF INDIANAPOLIS, IN

 

 

 

 

 

 

 

 
by
 

 
Kara
 Karboski
 

 

 

 

 

 

 

 

 

 

 

 

 

 
A
 thesis
 
 
submitted
 in
 partial
 fulfillment
 
of
 the
 requirements
 for
 the
 degree
 
Master
 of
 Environmental
 Studies
 
The
 Evergreen
 State
 College
 
June
 2013
 


 


 


 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
©
 2013
 by
 Kara
 Karboski.
 All
 rights
 reserved.
 

 


 


 

 
This
 Thesis
 for
 the
 Master
 of
 Environmental
 Studies
 Degree
 
by
 
Kara
 Karboski
 

 
has
 been
 approved
 for
 
The
 Evergreen
 State
 College
 
by
 

 


 


 


 

___________________________
 
Erin
 Ellis
 
Member
 of
 the
 Faculty
 

 

 

 
___________________________
 
Date
 


 

Abstract
Distribution
 of
 Urban
 Household
 Carbon
 Dioxide
 Emissions
 along
 a
 Socioeconomic
 
Gradient
 of
 Indianapolis,
 IN
 

 
Kara
 Karboski
 

 

 
As
 cities
 tackle
 climate
 change
 mitigation,
 filling
 the
 gap
 left
 by
 failures
 in
 international
 
agreements,
 a
 demand
 for
 more
 information
 and
 data
 on
 the
 dynamics
 of
 urban
 carbon
 
dioxide
 (CO2)
 emissions
 has
 been
 created.
 Up
 to
 this
 point,
 past
 research
 of
 the
 drivers
 of
 
anthropogenic
 CO2
 emissions
 have
 failed
 to
 examine
 the
 dynamics
 of
 urban
 CO2
 emissions
 
at
 the
 neighborhood
 scale
 for
 an
 entire
 city.
 At
 this
 scale
 the
 effects
 of
 historical,
 cultural,
 
and
 structural
 forces
 that
 shape
 housing
 distribution
 of
 the
 city
 become
 visible.
 This
 type
 of
 
information
 could
 improve
 strategies
 and
 targets
 for
 local
 climate
 change
 mitigation
 policy.
 
 
Accordingly,
 the
 objective
 of
 this
 study
 was
 to
 examine
 the
 spatial
 distribution
 and
 
socioeconomic
 drivers
 of
 urban
 household
 CO2
 emissions.
 

 
This
 research
 used
 household
 CO2
 emission
 data,
 residence
 and
 transportation
 emissions,
 
from
 the
 Hestia
 Project
 and
 the
 Center
 for
 Neighborhood
 Technology
 to
 perform
 a
 spatial
 
analysis
 of
 the
 socioeconomic
 drivers
 of
 CO2
 emissions
 at
 the
 census
 tract
 scale
 for
 the
 city
 
of
 Indianapolis,
 IN.
 A
 spatial
 lag
 regression
 was
 employed
 to
 control
 for
 influences
 from
 
interactions
 and
 externalities
 associated
 with
 neighboring
 census
 tracts.
 The
 results
 show
 
the
 model
 explained
 a
 large
 portion
 of
 household
 CO2
 emissions,
 with
 spatial
 influences
 
exhibiting
 a
 strong
 influence.
 Income
 was
 found
 to
 be
 a
 strong
 predictor
 of
 household
 CO2
 
emissions
 (β
 =
 -­‐0.46,
 p
 <
 .001).
 Race
 and
 ethnicity
 of
 households
 for
 both
 black
 households
 

 =
 0.11,
 p
 <
 .001)
 and
 Asian
 households
 (β
 =
 -­‐0.11,
 p
 <
 .001),
 while
 significant,
 were
 found
 
to
 be
 weak
 predictors
 of
 emissions.
 This
 study
 concludes
 that
 there
 is
 significant
 variability
 
in
 household
 CO2
 emissions
 across
 the
 urban
 space
 due
 in
 large
 part
 to
 the
 variability
 and
 
distribution
 of
 socioeconomic
 factors.
 This
 type
 of
 information
 should
 be
 integrated
 into
 
local
 climate
 change
 policy
 to
 improve
 strategies
 to
 mitigation.
 

 

 

 


 


 


 

Table of Contents

List of Tables -------------------------------------------- vi
 
List of Figures -------------------------------------------- vii
 
Acknowledgements ------------------------------------- viii
 
Chapter 1: Introduction ----------------------------------- 1
 
1.1
 Introduction
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 1
 
1.2
 Background
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 3
 
1.3
 Structure
 of
 Thesis
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 5
 

Chapter 2: Literature Review ------------------------------ 7
 
2.1
 Introduction
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 7
 
2.2
 Climate
 Change
 and
 the
 Carbon
 Cycle
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 9
 
2.3
 City
 Policy
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  10
 
2.4
 Anthropogenic
 Emissions
 and
 Greenhouse
 Gas
 Inventories
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  12
 
2.5
 Physical
 Drivers
 of
 Carbon
 Emissions
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  17
 
2.6
 Socioeconomic
 Drivers
 of
 Carbon
 Emissions
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  20
 
2.5.1
 Income
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 20
 
2.5.2
 Race
 and
 ethnicity
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 23
 
2.6
 Conclusion
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  26
 

Chapter 3: Methods ------------------------------------- 28
 
3.1
 Aim
 and
 Objectives
 of
 Research
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  28
 
3.2
 Study
 Area
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  29
 
3.3
 Data
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  31
 
3.3.1
 Variables
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 31
 
3.3.1.1
 Residence
 CO2
 Emission
 Data
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 31
 
3.3.1.2
 Transportation
 CO2
 Emissions
 Data
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 32
 
3.3.1.3
 Spatial
 Data
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 33
 
3.3.2
 Data
 Preparations
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 33
 
3.4
 Limitations
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  34
 
3.5
 Statistical
 Analysis
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  36
 

Chapter 4: Results -------------------------------------- 40
 
4.1
 Descriptive
 Statistics
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  40
 
4.2
 Statistical
 Analysis
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  45
 

Chapter 5: Discussion ----------------------------------- 52
 
5.1
 Spatial
 Variables
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  53
 
5.2
 Income
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  55
 
5.3
 Race
 and
 ethnicity
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  57
 
iv
 

5.4
 Other
 variables
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  59
 
5.5
 Policy
 implications
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  61
 

Chapter 6: Conclusion ---------------------------------- 64
 
6.1
 Conclusion
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  64
 
6.2
 Interdisciplinary
 Statement
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  66
 
6.4
 Recommendations
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  67
 

Bibliography -------------------------------------------- 69
 
Appendix A --------------------------------------------- 75
 
Appendix B ---------------------------------------------- 77
 
Appendix C --------------------------------------------- 80
 

 

v
 

List of Tables
Table
 1:
 Five
 number
 summary
 of
 independent
 and
 dependent
 variables.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  40
 
Table
 2:
 Moran's
 I
 test
 for
 spatial
 dependency
 among
 the
 residuals
 of
 the
 regression
 
models.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  46
 
Table
 3:
 OLS
 and
 spatial
 lag
 model
 regression
 results.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  51
 
Table
 4:
 Moran's
 I
 test
 for
 spatial
 dependency
 among
 CO2
 variables.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  75
 

 

 

 


 

vi
 

List of Figures
Figure
 1:
 Inset
 map
 of
 Marion
 County
 –
 Indianapolis
 in
 the
 state
 of
 Indiana.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  30
 
Figure
 2:
 Average
 household
 transportation
 CO2
 per
 census
 tract
 in
 Indianapolis,
 IN.
 -­‐-­‐-­‐-­‐-­‐
  41
 
Figure
 3:
 Average
 household
 residence
 CO2
 per
 census
 tract
 in
 Indianapolis,
 IN.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  41
 
Figure
 4:
 Average
 total
 household
 CO2
 per
 census
 tract
 in
 Indianapolis,
 IN
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  42
 
Figure
 5:
 Percentage
 of
 Asian
 households
 per
 census
 tract
 in
 Indianapolis,
 IN.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  44
 
Figure
 6:
 Percentage
 of
 black
 households
 per
 census
 tract
 in
 Indianapolis,
 IN.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  44
 
Figure
 7:
 Median
 household
 income
 per
 census
 tract
 of
 Indianapolis,
 IN.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  45
 
Figure
 8:
 Local
 Moran
 on
 residuals
 of
 the
 total
 household
 CO2
 OLS
 regression
 model.
 -­‐-­‐-­‐-­‐-­‐
  47
 
Figure
 9:
 Local
 Moran
 on
 residuals
 of
 total
 household
 CO2
 spatial
 lag
 regression
 model.
 -­‐-­‐
  47
 
Figure
 10:
 The
 regression
 plot
 of
 total
 household
 CO2
 emissions
 of
 the
 predicted
 model
 by
 
the
 observed
 emissions
 for
 the
 spatial
 lag
 regression.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  49
 
Figure
 11:
 Local
 Moran’s
 I
 on
 total
 household
 CO2
 emissions.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  75
 
Figure
 12:
 Local
 Moran’s
 I
 on
 transportation
 CO2
 emissions.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  76
 
Figure
 13:
 Local
 Moran’s
 I
 on
 residence
 CO2
 emissions.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  76
 
Figure
 14:
 Local
 Moran’s
 I
 on
 residuals
 of
 residence
 CO2
 OLS
 regression
 model.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  77
 
Figure
 15:
 Local
 Moran’s
 I
 on
 residuals
 of
 residence
 CO2
 spatial
 lag
 regression
 model.
 -­‐-­‐-­‐-­‐
  78
 
Figure
 16:
 Local
 Moran’s
 I
 on
 residuals
 of
 transportation
 CO2
 OLS
 regression
 model.
 -­‐-­‐-­‐-­‐-­‐-­‐
  78
 
Figure
 17:
 Local
 Moran’s
 I
 on
 residuals
 of
 transportation
 CO2
 spatial
 lag
 regression
 model..

 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  79
 
Figure
 18:
 The
 regression
 plot
 of
 transportation
 CO2
 emissions
 of
 the
 predicted
 model
 by
 
the
 observed
 emissions
 for
 the
 spatial
 lag
 regression.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  80
 
Figure
 19:
 The
 regression
 plot
 of
 residence
 CO2
 emissions
 of
 the
 predicted
 model
 by
 the
 
observed
 emissions
 for
 the
 spatial
 lag
 regression.
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
  80
 

 

 


 

vii
 

Acknowledgements
This
 work
 I
 set
 out
 on
 extends
 far
 beyond
 the
 reaches
 of
 a
 single
 institution,
 far
 beyond
 the
 
relatively
 short
 time
 I’ve
 spent
 in
 the
 MES
 program.
 Likewise,
 this
 thesis
 marks
 a
 
culmination
 of
 knowledge
 and
 experience
 from
 different
 places
 and
 people,
 past
 and
 
present.
 To
 all
 of
 you
 who
 helped
 me
 get
 here,
 thank
 you.
 

 
A
 giant
 thank
 you
 to
 my
 thesis
 reader
 and
 MES
 faculty
 member
 Dr.
 Erin
 Ellis,
 a
 source
 of
 
encouragement
 and
 support.
 Your
 high
 expectations,
 but
 also
 belief,
 pushed
 me
 to
 produce
 
my
 best
 work.
 I
 would
 also
 like
 to
 thank
 the
 rest
 of
 the
 MES
 faculty,
 especially
 those
 I’ve
 
had
 the
 great
 pleasure
 of
 learning
 and
 working
 with.
 

 
I
 would
 like
 to
 acknowledge
 the
 Hestia
 Project
 based
 at
 Arizona
 State
 University
 and
 the
 
Center
 for
 Neighborhood
 technology
 for
 providing
 me
 with
 the
 data
 to
 make
 this
 thesis
 a
 
reality.
 

 
Finally,
 many
 deserved
 and
 inexpressible
 thanks
 to
 my
 family,
 both
 by
 blood
 and
 by
 cohort.
 

 

viii
 

Chapter 1: Introduction
1.1 Introduction
The
 urban
 space
 has
 become
 the
 new
 battleground
 for
 climate
 change
 mitigation.
 
Undeterred
 by
 the
 lack
 of
 agreement
 and
 response
 at
 the
 international
 and
 national
 level,
 
progressive
 municipalities
 across
 the
 United
 States
 are
 drafting
 climate
 change
 policy,
 
focusing
 their
 attention
 on
 the
 reduction
 of
 carbon
 dioxide
 (CO2)
 emissions,
 the
 largest
 
anthropogenic
 contributor
 to
 climate
 change.
 
 Because
 cities
 are
 committing
 the
 time
 and
 
financial
 resources
 to
 these
 types
 of
 policies,
 an
 accurate
 understanding
 of
 the
 patterns
 and
 
drivers
 of
 CO2
 emissions
 within
 cities
 is
 essential.
 Urban
 form
 is
 not
 only
 restricted
 to
 the
 
physical
 and
 technical
 aspects
 of
 the
 city;
 important
 structural,
 cultural,
 and
 historical
 
factors
 at
 work
 influence
 where
 CO2
 is
 generated
 within
 the
 city.
 Consequently,
 recognizing
 
and
 analyzing
 these
 spatial
 patterns
 is
 important
 for
 potential
 integration
 into
 city
 climate
 
policy.
 Information
 of
 this
 type
 can
 be
 used
 to
 inform
 and
 improve
 policy
 targeted
 at
 
reducing
 emissions
 as
 well
 as
 contribute
 to
 the
 knowledge
 of
 the
 urban
 drivers
 of
 climate
 
change.
 
Previous
 research
 analyzing
 the
 relationship
 between
 CO2
 emissions
 and
 cities
 has
 
consistently
 found
 socioeconomic
 factors
 as
 drivers
 of
 CO2,
 such
 as
 increasing
 CO2
 
emissions
 with
 increasing
 income.
 Most
 of
 these
 studies
 have
 focused
 on
 city-­‐level
 
emissions,
 carrying
 out
 their
 analysis
 by
 comparing
 CO2
 emissions
 between
 cities.
 While
 
this
 reveals
 important
 information,
 the
 dynamics
 of
 sub-­‐city-­‐level
 CO2
 emissions
 deserve
 
attention
 as
 well.
 This
 gap
 can
 be
 contributed
 to
 data
 constraints;
 neighborhood-­‐level
 

1
 

analysis
 requires
 fine-­‐scale
 data
 that
 is
 difficult
 and
 costly
 to
 obtain.
 Those
 few
 studies
 that
 
have
 examined
 CO2
 emissions
 at
 these
 smaller
 scales
 have
 had
 limited
 success
 because
 
their
 level
 of
 analysis
 was
 too
 large
 to
 perceive
 important
 spatial
 patterns
 that
 exist
 at
 the
 
sub-­‐city
 level.
 
 This
 thesis
 represents
 another
 step
 in
 examining
 fine-­‐scale
 urban
 CO2
 
emissions
 and
 seeks
 to
 bridge
 the
 gap
 in
 current
 research
 by
 utilizing
 small
 scale
 CO2
 data
 
at
 the
 census
 tract
 level
 to
 appropriately
 model
 neighborhood
 spatial
 dynamics.
 
Using
 data
 for
 the
 city
 of
 Indianapolis,
 IN,
 the
 research
 presented
 in
 this
 thesis
 
analyzes
 the
 distribution
 of
 household
 CO2
 emissions
 across
 the
 urban
 space
 as
 they
 relate
 
to
 socioeconomic
 factors
 that
 influence
 where
 people
 live
 by
 utilizing
 spatial
 analyses.
 By
 
specifically
 accounting
 for
 the
 influence
 of
 neighbors,
 that
 is
 the
 influence
 of
 connections
 
across
 space,
 this
 analysis
 attempts
 to
 develop
 an
 accurate
 and
 predictable
 model
 of
 urban
 
CO2
 emissions.
 Socioeconomic
 factors,
 most
 importantly
 income
 and
 race
 for
 this
 analysis,
 
can
 drive
 particular
 populations
 into
 certain
 parts
 of
 the
 city.
 As
 the
 city
 is
 not
 a
 
homogenous
 space,
 it
 is
 predicted
 that
 the
 underlying
 structure
 of
 the
 city,
 both
 physically
 
and
 socially,
 can
 be
 taken
 into
 account
 to
 accurately
 identify
 relationships
 between
 CO2
 
emissions
 and
 demographic
 factors.
 It
 is
 hypothesized
 that
 CO2
 emissions
 will
 be
 positively
 
associated
 with
 household
 income,
 that
 there
 will
 be
 a
 significant
 association
 with
 
household
 race,
 and
 variables
 of
 space
 will
 explain
 significant
 part
 of
 the
 creation
 of
 
household
 CO2
 emissions.
 

 

2
 

1.2 Background
Modern
 global
 climate
 change
 refers
 to
 the
 change
 in
 global
 temperatures
 caused
 by
 
increasing
 concentrations
 of
 greenhouse
 gases,
 including
 carbon
 dioxide,
 methane,
 nitrous
 
oxide,
 and
 fluorinated
 gases,
 in
 Earth’s
 atmosphere
 as
 well
 as
 by
 other
 anthropogenic
 
forcings
 such
 as
 changes
 in
 land
 use.
 These
 greenhouse
 gases
 play
 a
 vital
 role
 in
 regulating
 
a
 habitable
 temperature
 on
 Earth
 by
 trapping
 radiation
 energy
 sent
 by
 the
 Sun
 between
 
Earth’s
 surface
 and
 this
 layer
 of
 greenhouse
 gases
 in
 the
 atmosphere
 (IPCC,
 2007).
 
Quantitatively,
 the
 most
 important
 anthropogenic
 greenhouse
 gas
 is
 carbon
 dioxide
 (CO2).
 
Over
 the
 last
 few
 centuries
 we
 have
 primarily
 derived
 our
 energy
 for
 work
 through
 fossil
 
fuel
 sources
 such
 as
 coal,
 oil,
 and
 natural
 gas.
 These
 energy
 dense
 substances
 are
 composed
 
of
 carbon
 and
 when
 combusted
 release
 CO2.
 Research
 has
 shown
 that
 since
 humans
 began
 
combusting
 these
 materials
 in
 increasingly
 larger
 amounts
 beginning
 at
 the
 industrial
 
revolution,
 the
 CO2
 concentrations
 in
 the
 atmosphere
 have
 increased
 as
 well,
 intensifying
 
the
 power
 of
 the
 greenhouse
 effect
 and
 increasing
 global
 temperatures
 (IPCC,
 2007).
 
An
 increase
 in
 global
 temperatures
 would
 have,
 and
 is
 currently
 having,
 a
 profound
 
affect
 on
 the
 natural
 and
 built
 environments
 humans
 have
 adapted
 to.
 Effects
 include
 
shifting
 habitats,
 species
 extinction,
 increased
 drought,
 changing
 precipitation
 patterns,
 
and
 rising
 sea
 levels
 (IPCC,
 2007).
 All
 these
 biophysical
 changes
 will
 have
 extensive
 
impacts
 on
 human
 systems.
 
There
 is
 little
 incentive
 for
 individual
 actors
 to
 take
 action
 on
 expensive
 climate
 
change
 mitigation
 when
 their
 own
 efforts,
 by
 themselves,
 will
 do
 little
 to
 actually
 mitigate
 
the
 impacts
 of
 climate
 change.
 The
 burden
 of
 the
 costs
 of
 mitigation
 rests
 fully
 on
 those
 
3
 

who
 take
 mitigation
 actions,
 while
 the
 benefits
 accrue
 to
 everyone,
 even
 those
 who
 do
 not
 
act,
 thanks
 to
 the
 diffuse
 nature
 of
 CO2
 emissions.
 Thus
 the
 benefits
 become
 diluted
 for
 
those
 who
 took
 mitigation
 actions,
 and
 accordingly,
 costs
 of
 mitigation
 action
 exceed
 the
 
benefits
 of
 these
 actions.
 This
 is
 what
 economics
 terms
 the
 tragedy
 of
 the
 commons.
 Unless
 
there
 is
 agreement
 among
 all
 parties
 involved,
 agreement
 that
 isn’t
 presently
 occurring,
 
then
 this
 economic
 conundrum
 will
 continue.
 This
 is
 why
 climate
 change
 mitigation
 has
 
long
 been
 thought
 to
 be
 the
 realm
 of
 international
 discussion
 and
 negotiation,
 as
 these
 are
 
large
 enough
 actors
 to
 cover
 the
 entire
 global
 population.
 However,
 cities
 have
 been
 taking
 
action
 regardless
 of
 these
 perceived
 barriers.
 
 
Local
 climate
 policy
 has
 been
 of
 interest
 to
 researchers
 since
 its
 inception.
 While
 
these
 policies
 may
 be
 successful
 at
 meeting
 goals
 at
 the
 city
 level,
 they
 are
 ultimately
 
hindered
 in
 realizing
 substantial
 reduction
 in
 global
 CO2
 emissions.
 Several
 important
 
factors
 keep
 local
 reductions
 from
 providing
 substantial
 reductions
 in
 global
 CO2
 
emissions.
 First,
 local
 climate
 change
 mitigation
 policy
 is
 still
 in
 its
 infancy
 and
 the
 
coverage
 attributed
 to
 these
 policies
 is
 limited,
 and
 thus
 emission
 reductions
 are
 on
 an
 
extremely
 limited
 scale.
 Although
 several
 major
 cities
 have
 enacted
 CO2
 policies,
 it
 is
 
unclear
 how
 many
 people
 are
 falling
 under
 these
 policy
 umbrellas.
 Second,
 these
 policies
 
may
 not
 call
 for
 large
 cuts
 in
 emissions,
 or
 there
 may
 not
 be
 hard
 incentives
 to
 reduce
 
emissions
 in
 the
 first
 place,
 limiting
 their
 efficacy.
 Finally,
 as
 mentioned
 before,
 there
 seems
 
to
 be,
 at
 first
 glance,
 no
 to
 little
 economic
 incentive
 for
 cities
 to
 partake
 in
 climate
 change
 
mitigation
 policies.
 This
 is
 not
 to
 fault
 cities.
 Indeed
 their
 decision
 to
 take
 up
 any
 type
 of
 
climate
 change
 policy
 is
 surprising,
 but
 important.
 Perhaps
 the
 initiative
 being
 taken
 can
 

4
 

spur
 the
 global
 scale
 adoption
 of
 local
 policies
 or
 perhaps
 help
 push
 an
 international
 
agreement
 
For
 cities
 to
 draft
 effective
 climate
 change
 mitigation
 policy,
 they
 require
 data
 on
 the
 
greenhouse
 gases
 emitted
 from
 their
 jurisdiction.
 Additional
 information
 on
 the
 nature
 of
 
these
 emissions,
 the
 local
 factors
 that
 drive
 these
 emissions,
 could
 help
 aid
 policy
 
development.
 Furthermore,
 modeling
 the
 variables
 that
 influence
 urban
 CO2
 emissions
 will
 
contribute
 to
 our
 general
 knowledge
 of
 the
 drivers
 of
 climate
 change,
 and
 we
 may
 be
 better
 
able
 to
 project
 future
 emissions
 scenarios.
 Thus,
 it
 is
 important
 to
 understand
 the
 specific
 
dynamics
 of
 urban
 CO2
 emissions.
 

 

1.3 Structure of Thesis
There
 are
 six
 chapters
 presented
 in
 this
 thesis:
 
Chapter
 1:
 Introduction
 
Chapter
 2:
 Literature
 Review
 
Outlines
 the
 relevant
 and
 previous
 research
 relevant
 to
 this
 thesis
 beginning
 with
 
local
 climate
 change
 policy,
 and
 moving
 on
 to
 household
 determinants
 of
 energy
 
production
 and
 the
 factors
 that
 drive
 CO2
 emissions.
 Special
 focus
 is
 given
 to
 
socioeconomic
 factors
 of
 CO2.
 
Chapter
 3:
 Methods
 

5
 

Establishes
 the
 main
 research
 goals
 and
 the
 primary
 methodology
 and
 statistical
 
analysis
 employed
 within
 this
 study.
 
Chapter
 4:
 Results
 
The
 results
 from
 the
 analysis
 are
 presented.
 
Chapter
 5:
 Discussion
 
Discusses
 the
 findings
 from
 the
 results
 and
 the
 implications
 of
 these
 results
 on
 
climate
 change
 research
 and
 climate
 change
 mitigation
 policy.
 
Chapter
 6:
 Conclusion
 
Final
 conclusions
 are
 presented.
 An
 interdisciplinary
 statement
 discusses
 the
 
importance
 of
 multiple
 disciplines
 to
 the
 analysis
 conducted
 in
 this
 paper.
 This
 
paper
 ends
 with
 further
 recommendations
 for
 study.
 


 

6
 

Chapter 2: Literature Review
2.1 Introduction
Climate
 change
 is
 a
 global
 issue
 encompassing
 complex
 natural
 and
 human
 systems
 
and
 has
 thus
 necessitated
 a
 large
 body
 of
 research
 outside
 of
 the
 physical
 sciences.
 Unifying
 
under
 the
 single
 issue
 of
 climate
 change
 has
 led
 to
 research
 across
 and
 between
 a
 breadth
 
of
 disciplines
 ranging
 from
 economics
 and
 political
 science,
 to
 conservation
 biology
 and
 
international
 development.
 Interest
 has
 grown
 over
 the
 last
 few
 years
 regarding
 the
 
relationship,
 one
 of
 considerable
 give
 and
 take,
 between
 cities
 and
 climate
 change.
 
Extensive
 literature
 is
 devoted
 to
 examining
 these
 particular
 dynamics,
 where
 cities
 act
 as
 
substantive
 contributors
 to
 climate
 in
 addition
 to
 being
 areas
 of
 particular
 concern
 for
 
climate
 change
 impacts.
 Of
 immediate
 interest
 for
 this
 study
 is
 the
 literature
 focused
 on
 
cities’
 contributions
 to
 climate
 change
 and
 the
 drivers
 of
 climate
 change,
 with
 an
 emphasis
 
on
 the
 socioeconomic
 drivers
 of
 household
 CO2
 emissions,
 as
 well
 as
 spatial
 analysis
 of
 CO2
 
emissions
 between
 and
 within
 cities.
 
The
 spotlight
 on
 cities
 has
 magnified
 in
 part
 because
 of
 continuing
 urbanization:
 
projections
 indicate
 approximately
 67%
 of
 the
 global
 population
 will
 reside
 in
 urban
 areas
 
by
 2050,
 up
 from
 52%
 in
 2010,
 with
 an
 already
 heavily
 urbanized
 United
 States
 seeing
 a
 
relatively
 smaller
 change
 from
 82%
 to
 89%
 in
 that
 same
 time
 period
 (United
 Nations,
 
2012).
 This
 is
 of
 particular
 interest
 given
 the
 amount
 of
 anthropogenic
 CO2
 emissions
 that
 
currently
 come
 from
 cities,
 a
 number
 that
 is,
 unfortunately,
 difficult
 to
 pin
 down.
 Exactly
 
how
 much
 of
 current
 global
 CO2
 emissions
 can
 be
 allocated
 to
 urban
 areas
 is
 still
 debated,
 

7
 

the
 technical
 aspects
 of
 which
 will
 be
 covered
 further
 in
 this
 review.
 Perhaps
 30-­‐40%
 of
 
global
 greenhouse
 gas
 emissions
 (of
 which
 CO2
 is
 only
 one
 such
 gas)
 can
 be
 attributed
 to
 
cities
 (Hoornweg,
 Sugar,
 &
 Gómez,
 2011),
 while
 estimates
 of
 energy
 related
 CO2
 emissions
 
assert
 that
 approximately
 71%
 come
 from
 cities,
 a
 discrepancy
 due
 to
 the
 inordinate
 
amount
 of
 land
 change
 related
 emissions
 that
 occur
 outside
 of
 cities
 (International
 Energy
 
Agency,
 2008).
 Owing
 to
 the
 larger
 proportion
 of
 urbanization
 in
 the
 U.S.
 over
 global
 
averages
 (United
 Nations
 Department
 of
 Economic
 and
 Social
 Affairs,
 Population
 Divison,
 
2012),
 it
 can
 be
 reasonably
 assumed
 that
 the
 amount
 of
 CO2
 emissions
 from
 U.S.
 cities
 is
 
higher
 than
 the
 global
 estimate.
 This
 leads
 to
 a
 substantial
 amount
 of
 anthropogenic
 CO2
 
emissions
 falling
 under
 local
 jurisdictions.
 
As
 urban
 populations
 increase,
 the
 importance
 of
 cities
 as
 concentrations
 of
 
economy,
 policy,
 and
 culture
 is
 maintained.
 These
 trends
 place
 cities
 in
 the
 unique
 position
 
of
 addressing
 climate
 change
 impacts
 and
 adaptations
 at
 the
 local
 level.
 Indeed,
 due
 to
 
inaction
 by
 national
 governments,
 many
 cities
 have
 taken
 the
 initiative
 to
 address
 climate
 
change
 issues
 by
 implementing
 policies
 to
 lower
 greenhouse
 gas
 emissions
 in
 their
 
jurisdictions.
 Thus
 the
 relationship
 between
 cities,
 carbon
 dioxide
 (CO2)
 emissions,
 and
 
climate
 change
 has
 become
 even
 more
 essential
 to
 addressing
 this
 complex
 issue.
 
 
This
 literature
 review
 will
 first
 briefly
 discuss
 the
 current
 knowledge
 of
 climate
 
change
 and
 the
 global
 carbon
 cycle.
 An
 examination
 of
 cities’
 responses
 to
 climate
 change
 
through
 mitigation
 policies
 will
 then
 follow,
 specifically
 looking
 at
 greenhouse
 gas
 
inventories
 and
 other
 CO2
 data
 and
 its
 integration
 into
 the
 decision-­‐making
 process.
 I
 will
 
then
 examine
 the
 research
 on
 anthropogenic
 carbon
 emissions
 and
 its
 related
 energy
 

8
 

literature.
 In
 particular,
 there
 will
 be
 focus
 on
 the
 household
 sector,
 made
 up
 of
 residences
 
and
 their
 associated
 transportation,
 and
 the
 physical
 characteristics
 and
 environmental
 
factors
 that
 drive
 emissions
 in
 these
 areas.
 Finally,
 there
 will
 be
 a
 discussion
 of
 the
 human
 
drivers
 of
 household
 CO2
 emissions
 with
 an
 emphasis
 on
 income,
 race,
 and
 ethnicity.
 This
 
review
 will
 show
 that
 there
 are
 significant
 gaps
 in
 the
 analysis
 of
 the
 socioeconomic
 drivers
 
of
 CO2,
 both
 in
 content
 and
 scale.
 A
 spatial
 analysis
 of
 a
 single
 urban
 system
 could
 
potentially
 take
 into
 account
 the
 sociological
 and
 economic
 variables
 of
 urban
 form,
 and
 
could
 better
 inform
 policy,
 climate
 scenarios,
 and
 our
 understanding
 of
 urban
 dynamics.
 
 

 

2.2 Climate Change and the Carbon Cycle
Climate
 change
 in
 this
 context
 refers
 to
 the
 modern
 change
 in
 Earth’s
 climate
 
brought
 on
 by
 increasing
 concentrations
 of
 atmospheric
 gases,
 termed
 greenhouse
 gases,
 
responsible
 for
 regulating
 Earth’s
 habitable
 temperature.
 As
 the
 main
 driver
 of
 
anthropogenic
 global
 climate
 change,
 CO2
 emissions,
 and
 by
 relation
 carbon
 itself,
 have
 
received
 significant
 attention.
 Carbon
 cycling
 research
 examines
 the
 movement,
 fluxes,
 and
 
sinks
 of
 carbon
 through
 Earth’s
 reservoirs:
 the
 atmosphere,
 ocean,
 and
 land.
 
Anthropogenic
 carbon,
 from
 fossil
 fuel
 combustion
 and
 land
 change,
 is
 the
 third
 
largest
 carbon
 flux
 to
 the
 atmosphere.
 Current
 estimates
 put
 this
 flux
 at
 9.9±.0.9
 Pg
 of
 
carbon
 per
 year
 (1
 petagram,
 or
 Pg,
 equals
 109
 metric
 tonnes),
 8.7±0.5
 Pg
 of
 which
 can
 be
 
attributed
 to
 fossil
 fuel
 combustion,
 with
 the
 remainder
 due
 to
 land-­‐use
 change
 (Le
 Quéré
 
et
 al.,
 2009).
 This
 is
 a
 significant
 alteration
 to
 the
 global
 carbon
 cycle.
 Furthermore,
 

9
 

although
 carbon
 sinks,
 such
 as
 the
 oceans
 and
 land,
 have
 absorbed
 a
 significant
 amount
 of
 
this
 carbon,
 it
 is
 speculated
 that
 their
 ability
 to
 do
 so
 will
 weaken
 in
 the
 future
 (Canadell
 et
 
al.,
 2007).
 
 
Recognizing
 urban
 areas
 as
 important
 sources
 of
 carbon
 has
 led
 recent
 in
 
integrating
 urban
 dynamics
 –
 the
 political,
 social,
 and
 physical
 complexities
 of
 cities
 –
 into
 
carbon
 cycle
 modeling
 (Churkina,
 2008;
 Pataki
 et
 al.,
 2006).
 This
 requires
 further
 
understanding
 of
 the
 urban
 drivers
 of
 anthropogenic
 CO2
 emissions
 as
 well
 as
 more
 
consistent,
 detailed,
 and
 available
 CO2
 data.
 

 

2.3 City Policy
Reductions
 in
 CO2
 emissions
 at
 the
 individual
 city
 level
 are
 too
 small
 to
 affect
 global
 
CO2
 concentrations,
 so
 without
 higher
 level
 policy
 from
 national
 governments
 there
 seems
 
to
 be
 little
 incentive
 for
 local
 action
 (e.g.
 Betsill
 &
 Bulkeley,
 2007;
 Betsill,
 2001;
 Engel
 &
 
Orbach,
 2008).
 However,
 cities
 are
 taking
 the
 initiative
 on
 climate
 change
 mitigation
 
regardless,
 connecting
 a
 global
 issue
 with
 local
 issues.
 A
 large
 body
 of
 research
 has
 
developed
 around
 local
 motivations,
 analyzing
 why
 cities
 are
 taking
 action,
 the
 barriers
 
and
 processes
 to
 these
 actions,
 and
 analysis
 of
 the
 actions
 themselves
 (Betsill
 &
 Bulkeley,
 
2007).
 
Motivational
 studies
 have
 found
 government
 officials
 and
 planners
 very
 often
 link
 
climate
 issues
 to
 cost-­‐saving
 ventures
 such
 as
 energy
 and
 building
 efficiency
 programs,
 
promote
 the
 environmental
 benefits
 of
 these
 policies,
 and
 in
 general
 are
 responsive
 to
 both
 
10
 

larger-­‐scale
 national
 and
 state
 pressures,
 as
 well
 as
 from
 local
 citizenry,
 groups,
 and
 
businesses
 (Engel
 &
 Orbach,
 2008;
 Kousky
 &
 Schneider,
 2003;
 Sharp
 et
 al.,
 2011;
 Sippel
 &
 
Jenssen,
 2009).
 Very
 often,
 climate
 change
 mitigation
 benefits
 are
 linked
 to
 other
 benefits
 
such
 as
 these.
 
Cities
 wanting
 to
 explicitly
 address
 climate
 change
 mitigation
 often
 draft
 climate
 
change
 plans,
 a
 consolidation
 of
 actionable
 policies
 organized
 around
 the
 goal
 of
 reducing
 
local
 CO2
 emissions
 (Boswell
 et
 al.,
 2010;
 Krause,
 2011b;
 Tang
 et
 al.,
 2010).
 These
 plans
 are
 
often
 explicitly
 linked
 to
 local
 greenhouse
 gas
 inventories.
 There
 is
 a
 large
 range
 of
 actions
 
that
 cities
 have
 taken
 to
 address
 climate
 change;
 Krause
 (2011b)
 identifies
 several
 types:
 
policies
 based
 on
 enabling
 as
 through
 positive
 incentives,
 policies
 based
 on
 authority
 as
 
through
 regulation
 or
 negative
 incentives,
 by
 providing
 services
 that
 influence
 wanted
 
behavior,
 and
 finally
 policies
 directed
 toward
 municipal
 operations.
 Examples
 of
 the
 types
 
of
 policies
 that
 can
 be
 tied
 to
 climate
 change
 include
 changing
 building
 efficiency
 codes,
 
changing
 their
 solid
 waste
 programs,
 and
 creating
 energy
 efficient
 infrastructure
 changes
 
to
 city
 property
 and
 projects
 (Betsill,
 2001;
 Krause,
 2011a).
 While
 many
 cities
 have
 
formalized
 climate
 action
 plans,
 and
 have
 taken
 actions
 in
 line
 with
 overarching
 policy,
 
Krause
 (2011a)
 notes
 that
 many
 municipalities
 are
 taking
 actions
 that
 reduce
 greenhouse
 
gases
 without
 being
 implicitly
 involved
 in
 a
 larger
 climate
 action
 plan.
 
 
Without
 a
 formalized
 policy
 framework
 however,
 and
 the
 reliable
 and
 accurate
 
information
 to
 drive
 that
 policy,
 it
 would
 be
 ineffective
 for
 cities
 to
 direct
 policies
 and
 
assess
 benefits
 and
 progress
 tied
 to
 climate
 change.
 Because
 of
 this,
 many
 local,
 state,
 and
 
national
 governments,
 businesses,
 and
 individuals
 track
 their
 greenhouse
 gas
 emissions,
 

11
 

often
 utilizing
 the
 help
 of
 already
 established
 frameworks,
 such
 as
 the
 framework
 
established
 by
 Local
 Governments
 for
 Sustainability
 (to
 be
 discussed
 below)
 (Eggleston
 et
 
al.,
 2006;
 ICLEI,
 2012).
 
 

 

2.4 Anthropogenic Emissions and Greenhouse Gas Inventories
A
 greenhouse
 gas
 inventory
 tracks
 the
 flux
 of
 greenhouse
 gases,
 most
 notably
 CO2,
 
but
 also
 methane,
 nitrous
 oxide,
 and
 fluorinated
 gases
 (reported
 in
 their
 CO2
 equivalents),
 
for
 a
 determined
 geographic
 area,
 such
 as
 a
 city
 or
 state,
 over
 a
 particular
 time
 period,
 
often
 a
 year.
 Both
 sources
 and
 sinks
 of
 CO2
 can
 be
 inventoried.
 Emissions
 may
 be
 reported
 
by
 the
 particular
 sector
 that
 they
 originated
 from,
 such
 as
 transportation,
 waste,
 
residential,
 industrial,
 or
 municipal
 operations.
 Data
 from
 these
 inventories
 can
 be
 used
 for
 
target
 setting,
 evaluation
 of
 policies,
 projection
 of
 future
 emissions,
 and
 other
 analyses.
 
Greenhouse
 gas
 inventories
 have
 been
 used
 in
 international
 agreements
 such
 as
 the
 Kyoto
 
Protocol
 and
 the
 Copenhagen
 Accord,
 in
 international
 and
 national
 agreements
 between
 
cities,
 such
 as
 Local
 Governments
 for
 Sustainability
 (ICLEI)
 and
 the
 Mayors
 Climate
 
Protection
 Agreement
 (MCPA),
 and
 by
 individual
 nations,
 states,
 cities
 and
 researchers.
 
The
 United
 States,
 in
 accordance
 with
 the
 United
 Nations
 Framework
 Convention
 on
 
Climate
 Change,
 has
 been
 conducting
 yearly
 national
 greenhouse
 gas
 inventories
 since
 
1990.
 Emissions
 are
 tracked
 by
 type
 of
 greenhouse
 gas,
 sector
 of
 emission,
 and
 includes
 
sources
 as
 well
 as
 sinks
 (US
 EPA,
 n.d.).
 Energy
 related
 CO2
 emissions
 are
 the
 primary
 
source
 of
 greenhouse
 gases
 in
 the
 U.S.,
 accounting
 for
 81%
 of
 emissions
 in
 2007
 (U.S.
 

12
 

Department
 of
 Commerce
 Economics
 and
 Statistics
 Administration,
 2010).
 Of
 these
 energy
 
related
 emissions,
 household
 emissions,
 those
 CO2
 emissions
 from
 household
 
transportation
 and
 residence,
 accounted
 for
 the
 largest,
 approximately
 30%.
 Household
 
emissions
 are
 defined
 by
 the
 U.S.
 Department
 of
 Commerce
 as
 those
 energy
 emissions
 
related
 to
 residential
 fuel
 and
 electricity
 use,
 as
 well
 as
 light-­‐duty
 vehicle
 related
 emissions,
 
approximated
 to
 be
 transportation
 associated
 with
 households.
 Consequently,
 research
 has
 
focused
 on
 the
 drivers
 of
 urban
 and
 household
 CO2
 emissions.
 
Local-­‐level
 municipalities
 are
 also
 conducting
 greenhouse
 gas
 inventories.
 ICLEI
 
provides
 support
 and
 resources
 to
 municipalities
 who
 join,
 including
 help
 with
 greenhouse
 
gas
 inventories.
 Both
 the
 MCPA
 and
 ICLEI
 codify
 reductions
 in
 emissions
 for
 those
 
municipalities
 involved.
 As
 of
 2010,
 5%
 of
 U.S.
 cities
 were
 part
 of
 either
 the
 MCPA
 or
 ICLEI,
 
covering
 approximately
 30%
 of
 the
 U.S.
 population
 under
 formal,
 and
 local,
 climate
 policy
 
(Rachel
 M.
 Krause,
 2011).
 Inventories
 are
 utilized
 as
 benchmarks
 to
 gauge
 progress
 and
 
effectiveness
 of
 greenhouse
 gas
 reducing
 policies.
 
Extensive
 amounts
 of
 data
 are
 required
 to
 understand
 the
 climate
 system
 and
 its
 
interaction
 with
 human
 and
 natural
 systems.
 Greenhouse
 gas
 inventories
 are
 just
 one
 tool,
 
but
 they
 have
 been
 used
 in
 scientific
 research
 to
 better
 understand
 both
 the
 biophysical
 
and
 socioeconomic
 driving
 factors
 of
 climate
 change,
 as
 well
 as
 to
 project
 future
 emissions
 
and
 inform
 policy.
 This
 type
 of
 research
 is
 heavily
 rooted
 in
 the
 energy
 and
 energy
 
metabolism
 literature,
 in
 engineering
 and
 in
 economics.
 The
 connection
 between
 energy
 
consumption
 and
 CO2
 emissions
 is
 well
 established,
 generating
 interest
 in
 how
 to
 reduce
 
energy
 consumption,
 and
 thus
 CO2,
 by
 improving
 the
 efficiency
 of
 infrastructure.
 In
 this
 

13
 

vein,
 research
 has
 examined
 the
 drivers
 of
 CO2
 emissions
 and
 energy
 consumption,
 
analyzing
 the
 physical
 characteristics
 of
 the
 built
 and
 natural
 environment,
 as
 well
 as
 
demographic
 and
 socioeconomic
 factors.
 
The
 initial
 steps
 in
 these
 analyses,
 and
 in
 city
 climate
 action
 plans,
 is
 an
 accounting
 
of
 all
 the
 emissions
 associated
 with
 a
 particular
 place.
 Greenhouse
 gas
 inventories
 can
 take
 
place
 on
 different
 horizontal
 and
 vertical
 scales.
 The
 first
 greenhouse
 gas
 inventories
 were
 
done
 on
 the
 national
 level.
 Inventories
 at
 smaller
 scales,
 such
 as
 done
 by
 municipalities,
 
followed
 shortly
 after.
 The
 Intergovernmental
 Panel
 on
 Climate
 Change
 (IPCC)
 released
 
their
 first
 methodology
 for
 national
 greenhouse
 gas
 inventories
 in
 1994.
 Individual
 states
 
have
 also
 conducted
 greenhouse
 gas
 inventories
 and
 ICLEI
 has
 recently
 released
 their
 
inventory
 procedures
 for
 cities
 and
 other
 community
 groups
 and
 organizations
 (ICLEI,
 
2012).
 
Methodologies
 vary
 in
 the
 approach
 to
 measuring
 CO2
 emissions.
 Some
 
methodologies
 have
 directly
 measured
 the
 fluxes
 of
 CO2
 as
 they
 vary
 spatially
 and
 
temporally
 within
 a
 city
 using
 direct
 measurements
 of
 CO2
 (Wentz
 et
 al.,
 2002).
 
Greenhouse
 gas
 inventories
 however,
 utilize
 energy
 and
 consumption
 data
 as
 proxy
 
measurements
 of
 CO2.
 When
 the
 amount
 of
 fuel
 used
 is
 known
 we
 can
 then
 get
 a
 
measurement
 of
 CO2
 emitted
 for
 that
 particular
 fuel.
 The
 amount
 of
 CO2
 utilized
 by
 each
 
sector
 –
 generally,
 industrial,
 commercial,
 residential,
 and
 transportation,
 but
 varies
 by
 
inventory
 needs
 –
 can
 then
 be
 determined
 (Glaeser
 &
 Kahn,
 2010;
 Golley
 &
 Meng,
 2012;
 
Gurney
 et
 al.,
 2012;
 Kennedy
 et
 al.,
 2010;
 Ramaswami
 et
 al.,
 2008;
 VandeWeghe
 &
 Kennedy,
 
2007).
 Some
 approaches
 also
 try
 to
 integrate
 the
 emissions
 associated
 with
 goods
 

14
 

produced
 outside
 the
 inventory
 boundary
 area,
 but
 consumed
 within
 in
 an
 attempt
 to
 
correctly
 assign
 those
 emissions
 to
 those
 who
 are
 creating
 the
 demand.
 These
 types
 of
 
analyses
 typically
 use
 the
 household
 as
 the
 level
 of
 analysis.
 However,
 this
 is
 a
 very
 data
 
intensive
 process
 and
 so
 complete
 inventorying
 utilizing
 this
 approach
 has
 been
 limited.
 
Recent
 developments
 have
 focused
 on
 several
 key
 areas
 where
 data
 is
 missing
 or
 is
 
insufficient
 in
 inventories.
 County
 and
 city
 inventories
 are
 relatively
 recent
 tools,
 but
 
progress
 in
 the
 past
 few
 years
 has
 centered
 on
 making
 these
 inventories
 more
 consistent
 
and
 rigorous.
 These
 recent
 guidelines
 for
 inventory
 have
 been
 in
 response
 to
 innovative,
 
but
 inconsistent
 community
 level
 greenhouse
 gas
 inventories
 (S.
 Kennedy
 &
 Sgouridis,
 
2011).
 
There
 are
 several
 ways
 to
 account
 for
 greenhouse
 gas
 emissions,
 and
 determining
 
the
 best
 inventory
 procedures
 has
 been
 debated
 extensively
 in
 the
 literature.
 Issues
 arise
 in
 
inventories
 when
 considering
 scale,
 vertically
 or
 horizontally,
 when
 determining
 the
 
sectors
 to
 include,
 and
 how
 to
 assign
 the
 point
 of
 measurement
 of
 emissions
 (C.
 Kennedy
 et
 
al.,
 2009).
 One
 of
 the
 more
 important
 discussions
 of
 greenhouse
 gas
 inventories
 concerns
 
the
 latter
 point,
 where
 CO2
 emissions
 are
 counted:
 the
 source
 of
 their
 production
 (i.e.
 the
 
point
 of
 combustion
 of
 fossil),
 or
 should
 it
 be
 counted
 at
 consumption
 (i.e.
 at
 the
 final
 
source
 of
 the
 demand).
 The
 choice
 between
 a
 production
 or
 consumption
 based
 inventory
 
has
 significant
 impacts
 on
 finals
 results
 of
 inventories
 or
 analyses.
 Depending
 which
 is
 
used,
 the
 inventory
 will
 be
 more
 or
 less
 weighted
 towards
 municipalities,
 states,
 or
 nations
 
that
 have
 large
 discrepancies
 in
 trade
 of
 goods
 or
 electricity
 (Dodman,
 2009;
 Larsen
 &
 
Hertwich,
 2009;
 Peters
 &
 Hertwich,
 2008;
 Satterthwaite,
 2008).
 

15
 

There
 have
 been
 few
 studies
 attempting
 to
 spatially
 aggregate
 CO2
 emissions
 at
 
smaller
 scales
 than
 the
 city-­‐scale.
 Several
 different
 methods
 of
 modeling
 emissions
 have
 
been
 developed.
 Top-­‐down
 approaches
 utilize
 data
 from
 larger
 scales
 that,
 through
 various
 
modeling
 techniques
 and
 established
 variable
 relationships,
 is
 projected
 onto
 smaller
 
scales.
 Bottom-­‐up
 approaches
 utilize
 information
 from
 very
 small-­‐scales,
 say
 through
 
characteristics
 of
 known
 building
 types
 or
 through
 actual
 consumption
 information
 of
 
households,
 to
 extrapolate
 those
 values
 to
 larger
 scales
 (Swan
 &
 Ugursal,
 2009).
 The
 Hestia
 
Project,
 which
 modeled
 county
 level
 emission
 data
 generated
 from
 the
 Vulcan
 Project
 to
 
the
 building
 level
 to
 create
 spatial
 and
 temporal
 visualizations
 of
 CO2
 emissions
 for
 the
 city
 
of
 Indianapolis,
 IN,
 is
 an
 example
 of
 a
 top-­‐down
 method,
 utilizing
 utility
 data
 to
 verify
 the
 
downscaled-­‐model
 (Gurney
 et
 al.,
 2012).
 In
 a
 different
 study,
 (VandeWeghe
 &
 Kennedy,
 
2007)
 spatially
 analyzed
 the
 distribution
 of
 CO2
 by
 census
 tracts
 for
 the
 Toronto
 Census
 
Metropolitan
 Area
 as
 a
 way
 to
 assess
 the
 influence
 of
 urban
 form
 on
 emissions.
 They
 
utilized
 energy
 data
 reported
 at
 the
 census
 tract
 level
 for
 their
 analysis
 examining
 
variability
 in
 CO2
 emissions.
 
However,
 because
 of
 their
 immense
 and
 intensive
 data
 requirements,
 as
 well
 as
 
difficulties
 getting
 smaller-­‐scale
 data
 from
 electricity
 providers,
 city
 greenhouse
 gas
 
inventories
 have
 traditionally
 been
 scaled
 to
 the
 entire
 city.
 Smaller
 scale
 data,
 at
 the
 
neighborhood
 level
 for
 example,
 could
 provide
 further
 levels
 of
 analysis
 and
 elucidate
 
spatial
 trends
 and
 patterns
 across
 the
 city.
 Paired
 with
 demographic
 data
 (see
 Hillmer-­‐
Pegram
 et
 al.
 (2012)),
 these
 types
 of
 small-­‐scale
 inventories
 could
 potentially
 help
 tease
 
apart
 important
 information
 and
 help
 guide
 policy
 decisions,
 just
 as
 inventories
 broken
 
down
 by
 sectors
 do.
 
16
 

Once
 completed,
 greenhouse
 gas
 inventory
 data
 can
 be
 used
 in
 conjunction
 with
 
other
 types
 of
 data
 to
 analyze
 trends
 and
 drivers
 of
 emissions.
 Within
 these
 types
 of
 
analyses,
 there
 are
 several
 key
 areas
 that
 constitute
 the
 determinants
 of
 household
 CO2
 
emissions:
 the
 physical
 characteristics
 of
 buildings
 and
 urban
 structure,
 the
 biophysical
 
characteristics
 of
 the
 surrounding
 environment,
 family
 or
 household
 structure,
 and
 
socioeconomic
 factors.
 Many
 studies
 utilize
 multiple
 factor
 types,
 both
 the
 biophysical
 and
 
socioeconomic
 factors,
 as
 a
 way
 to
 predict
 emissions
 and
 create
 comprehensive
 models.
 

 

2.5 Physical Drivers of Carbon Emissions
A
 substantial
 portion
 of
 household
 CO2
 emissions
 research
 has
 been
 concerned
 with
 
the
 physical
 factors
 that
 can
 contribute
 to
 increased
 energy
 demand,
 and
 by
 extension
 CO2
 
emissions.
 Specifically,
 this
 research
 has
 identified
 factors
 that
 exist
 in
 the
 physical
 
structure
 and
 construction
 of
 residences,
 within
 urban
 form,
 as
 well
 as
 in
 biophysical
 
aspects
 of
 climate.
 Using
 U.S.
 urbanization
 rates
 we
 could
 predict
 that
 roughly
 25%
 of
 
energy-­‐derived
 CO2
 emissions
 in
 the
 U.S.
 come
 from
 households
 within
 cities,
 and
 this
 
substantial
 amount
 of
 CO2
 has
 driven
 research
 into
 understanding
 how
 they
 are
 created
 
with
 urban
 areas.
 
 
The
 research
 on
 urban
 form
 on
 household
 CO2
 emissions
 generally
 examines
 the
 
impacts
 of
 density.
 While
 some
 explicitly
 look
 at
 population
 density
 (Glaeser
 &
 Kahn,
 2010;
 
Kaza,
 2010)
 others
 examine
 how
 urban
 form
 impacts
 transportation,
 and
 thus
 CO2
 
emissions
 (Brownstone
 &
 Golob,
 2009;
 VandeWeghe
 &
 Kennedy,
 2007).
 Density
 is
 also
 

17
 

examined
 through
 analyses
 of
 differences
 between
 rural
 and
 urban
 households,
 although
 
there
 is
 no
 consensus
 in
 the
 literature
 as
 to
 the
 relative
 emissions
 between
 urban
 and
 rural
 
areas.
 While
 some
 support
 conclusions
 that
 cities
 actually
 produce
 less
 CO2
 emissions
 per
 
capita
 than
 in
 other
 areas
 (Dodman,
 2009;
 Satterthwaite,
 2008;
 Wier
 et
 al.,
 2001),
 others
 
find
 that
 rural
 areas
 produce
 less
 CO2
 per
 capita
 than
 cities
 (Heinonen
 &
 Junnila,
 2011).
 
Possibilities
 for
 these
 discrepancies
 may
 lie
 in
 differing
 characteristics
 between
 countries
 
and
 cities,
 in
 the
 inherent
 heterogeneity
 that
 exists
 over
 large
 spaces
 and
 across
 cultures,
 
factors
 more
 related
 to
 climate
 or
 the
 socioeconomic
 characteristics
 of
 a
 particular
 place
 
than
 to
 urban
 form.
 Another
 possibility
 for
 the
 discrepancies
 may
 be
 found
 in
 how
 the
 CO2
 
emissions
 are
 determined:
 consumption
 versus
 production
 inventories.
 (Heinonen
 &
 
Junnila,
 2011)
 specifically
 mention
 this
 problem
 and
 thus
 utilize
 a
 consumption-­‐based
 
approach.
 The
 differences
 between
 rural
 and
 urban
 emissions
 in
 their
 study
 are
 most
 likely
 
due
 to
 income
 differences
 between
 rural
 and
 urban
 areas,
 with
 higher
 levels
 of
 income
 in
 
urban
 areas
 leading
 to
 higher
 levels
 of
 consumption,
 and
 thus
 energy
 demand.
 A
 
production-­‐based
 inventory
 would
 have
 underreported
 the
 amount
 of
 emissions
 for
 high
 
consuming
 urban
 residents.
 Generally,
 density
 and
 urban
 form
 are
 found
 to
 be
 significant
 
contributors
 to
 household
 level
 CO2
 emissions
 from
 both
 residences
 and
 transportation
 
(Norman
 et
 al.,
 2006)
 
Physical
 housing
 characteristics
 are
 also
 important:
 several
 studies
 examine
 such
 
factors
 as
 age
 of
 the
 residence,
 housing
 type
 (single
 family
 versus
 multi-­‐family
 units),
 and
 
building
 size
 (Gurney
 et
 al.,
 2012;
 Kaza,
 2010;
 Min
 et
 al.,
 2010;
 Wier
 et
 al.,
 2001).
 These
 
characteristics
 are
 extensively
 utilized
 in
 the
 modeling
 of
 energy
 demand
 and
 CO2
 
emissions
 (Swan
 &
 Ugursal,
 2009).
 The
 relationship
 between
 these
 variables
 and
 CO2
 
18
 

emissions
 is
 complex.
 For
 example,
 housing
 size
 generally
 contributes
 to
 higher
 CO2
 
emissions
 as
 there
 is
 more
 space
 to
 regulate
 temperature
 and
 this
 requires
 more
 energy.
 
Newer
 houses
 tend
 to
 be
 made
 of
 materials
 that
 are
 better
 at
 regulating
 internal
 
temperatures.
 Add
 in
 other
 housing
 characteristics
 and
 it
 quickly
 becomes
 complex
 when
 
attempting
 to
 understand
 how
 the
 interactions
 between
 these
 drivers
 affect
 CO2
 emissions.
 
 
At
 larger
 scales
 there
 is
 interest
 in
 the
 influence
 of
 different
 fuel
 types
 and
 climates
 
on
 emissions.
 Generally,
 at
 the
 urban
 scale
 these
 factors
 play
 a
 significantly
 smaller
 role,
 
but
 at
 the
 regional
 or
 country
 level
 this
 can
 explain
 much
 of
 the
 variation
 in
 emission
 
intensities.
 Disparities
 in
 fuel
 types
 occur
 because
 of
 differential
 access
 to
 natural
 
resources
 (Glaeser
 &
 Kahn,
 2010;
 C.
 Kennedy
 et
 al.,
 2009).
 For
 example,
 the
 Northwest
 
United
 States
 derives
 much
 of
 its
 electricity
 from
 hydropower,
 which
 is
 generally
 CO2
 
neutral,
 versus
 the
 Midwest
 which
 is
 more
 reliant
 on
 coal
 and
 natural
 gas,
 very
 CO2
 
intensive
 fuels.
 
The
 difference
 between
 comfortable
 residence
 temperatures
 and
 outside
 
temperatures
 contributes
 to
 the
 influence
 of
 weather
 and
 climate
 directly
 (Kriström,
 
2008).
 Research
 and
 modeling
 of
 energy
 demand
 and
 CO2
 more
 specifically
 utilizes
 both
 
the
 amount
 of
 heating
 or
 cooling
 required
 for
 a
 household,
 and
 thus
 energy
 demand
 at
 both
 
the
 larger
 scale
 of
 cities
 and
 the
 individual
 household
 level
 (Glaeser
 &
 Kahn,
 2010;
 C.
 
Kennedy
 et
 al.,
 2009;
 Min
 et
 al.,
 2010).
 
Overall
 the
 CO2
 emission
 and
 energy
 literature
 has
 created
 various
 methods
 for
 
creating
 CO2
 data
 at
 multiple
 scales
 and
 has
 extensively
 analyzed
 these
 data
 sources
 for
 the
 
particular
 factors
 that
 may
 drive
 emissions.
 However,
 there
 is
 not
 always
 consistency
 in
 the
 
19
 

analyses
 of
 these
 drivers;
 the
 complexity
 of
 cities
 and
 household
 energy
 demand
 
contributes
 to
 much
 heterogeneity
 in
 results.
 Household
 level
 drivers
 may
 consist
 of
 more
 
than
 physical
 or
 natural
 factors.
 There
 are
 particular
 socioeconomic
 factors
 that
 have
 been
 
established
 as
 important
 factors,
 and
 so
 are
 examined
 in
 addition
 to
 the
 biophysical
 
drivers.
 

 

2.6 Socioeconomic Drivers of Carbon Emissions
The
 socioeconomic
 drivers
 of
 CO2
 emissions
 has
 been
 unevenly
 studied,
 although
 
historically
 there
 has
 been
 considerable
 literature
 devoted
 to
 residential
 energy
 demand
 
and
 socioeonomics
 (Kriström,
 2008;
 Lutzenhiser
 &
 Hackett,
 1993).
 As
 briefly
 mentioned
 
above,
 the
 relationship
 between
 income
 and
 CO2
 emissions
 has
 been
 fairly
 well
 established
 
on
 multiple
 scales.
 However,
 race
 and
 ethnicity
 are
 particular
 social
 factors
 of
 CO2
 
emissions
 that
 have
 been
 studied
 only
 in
 limited
 ways
 (Estiri,
 2013;
 Min
 et
 al.,
 2010).
 
2.5.1 Income
The
 relationship
 between
 income
 and
 CO2
 emissions
 has
 been
 best
 characterized
 
from
 an
 economic
 perspective,
 understandably
 given
 the
 direct
 connections
 between
 
energy
 demand,
 CO2
 emissions,
 and
 economic
 development.
 Considerable
 analysis
 has
 
centered
 on
 the
 Environmental
 Kuznets
 Curve
 (EKC),
 a
 hypothetical
 relationship
 between
 
economic
 growth
 and
 environmental
 degradation.
 This
 relationship
 follows
 an
 inverse
 U-­‐
shape
 whereby
 economic
 growth
 stimulates
 an
 increase
 in
 total
 environmental
 
degradation.
 However,
 due
 to
 decreasing
 marginal
 environmental
 degradation,
 the
 curve
 

20
 

ultimately
 reaches
 a
 peak.
 At
 this
 point
 as
 an
 economy
 grows
 total
 environmental
 
degradation
 begins
 to
 decrease.
 The
 argument
 follows
 that
 as
 countries
 gain
 affluence
 they
 
put
 a
 higher
 value
 on
 protecting
 the
 environment
 and
 thus
 reach
 the
 point
 where
 action
 
will
 be
 taken
 to
 reduce
 environmental
 degradation.
 
The
 hypothesis
 presented
 by
 the
 EKC
 has
 been
 analyzed
 in
 terms
 of
 income
 (as
 
economic
 growth)
 and
 carbon
 dioxide
 emissions
 (as
 environmental
 degradation).
 It’s
 
hypothesized
 that
 as
 income
 increases
 CO2
 emissions
 will
 increase
 up
 to
 a
 point,
 and
 then
 
additional
 income
 will
 induce
 an
 overall
 decrease
 in
 total
 CO2
 emissions
 as
 there
 is
 a
 
recognition
 among
 the
 populace,
 or
 rather
 priorities
 may
 shift,
 that
 CO2
 is
 connected
 to
 
climate
 change
 and
 those
 associated
 environmental
 impacts.
 
 Several
 analyses
 have
 
controlled
 for
 potential
 spatial
 and
 temporal
 variation
 complications.
 However
 the
 
relationship
 between
 income
 and
 CO2
 emissions
 is
 not
 consistent
 and
 other
 variables
 seem
 
to
 have
 significant
 influence
 on
 CO2
 emissions,
 such
 as
 climate
 and
 fuel
 type
 (Aldy,
 2005;
 
Burnett
 &
 Bergstrom,
 2010).
 Multiple
 analyses
 across
 a
 variety
 of
 countries
 have
 found
 
differing
 results
 on
 the
 applicability
 of
 CO2
 emissions
 to
 EKC
 (Aldy,
 2005),
 although
 the
 
relationship
 between
 CO2
 emissions
 and
 income
 itself
 have
 been
 consistently
 positive.
 
Although
 the
 economics
 literature
 has
 not
 found
 evidence
 for
 the
 EKC
 hypothesis
 in
 
connection
 with
 CO2
 emissions,
 the
 positive
 relationship
 between
 CO2
 and
 income
 is
 fairly
 
well
 established.
 Energy
 demand,
 and
 by
 direct
 connection
 CO2
 emissions,
 is
 derived
 
primarily
 as
 a
 means
 of
 economic
 development.
 Rising
 incomes
 result
 in
 higher
 demand
 for
 
goods
 and
 services
 and
 the
 energy
 needed
 to
 provide
 them.
 

21
 


 
 

At
 the
 global
 level,
 analyses
 of
 CO2
 emissions
 and
 gross
 domestic
 product
 (GDP)
 

reveal
 a
 positive
 relationship
 (Ramanathan,
 2006;
 Tucker,
 1995).
 Large
 scale
 climate
 
modeling
 utilize
 scenarios
 as
 key
 inputs,
 where,
 these
 projections
 about
 future
 
demographic
 and
 economic
 trends
 specifically
 take
 into
 account
 the
 influence
 of
 GDP
 as
 a
 
measurement
 of
 economic
 activity,
 and
 thus
 a
 driver
 of
 energy
 demand
 and
 CO2
 emissions.
 
The
 IPCC
 directly
 addresses
 the
 relationship
 between
 GDP
 and
 CO2
 emissions
 in
 their
 
Special
 Report
 on
 Emissions
 Scenarios
 and
 in
 their
 Assessment
 Reports
 (Metz,
 2007;
 
Nakicenovic
 et
 al.,
 2000).
 In
 analyzing
 cities
 from
 multiple
 countries,
 (C.
 Kennedy
 et
 al.,
 
2009)
 found
 that
 income
 was
 positively
 correlated
 to
 emissions.
 
Measures
 of
 income
 are
 consistently
 included
 in
 analyses
 of
 household
 
 CO2
 
emissions
 (Estiri,
 2013;
 Golley
 &
 Meng,
 2012;
 Kaza,
 2010;
 Kerkhof
 et
 al.,
 2009;
 Min
 et
 al.,
 
2010).
 This
 empirically
 makes
 sense;
 as
 household
 incomes
 rises
 the
 demand
 for
 larger
 
residences
 increase.
 Additionally,
 there
 is
 a
 strong
 correlation
 between
 increasing
 incomes
 
and
 movement
 away
 from
 traditional
 city
 centers;
 these
 suburbs
 increase
 commute
 times
 
and
 thus
 transportation
 costs
 and
 associated
 CO2
 emissions
 (Kahn,
 2000).
 Furthermore,
 
results
 from
 the
 2001
 National
 Household
 Travel
 Survey
 indicate
 that
 income
 is
 positively
 
associated
 not
 only
 with
 increased
 number
 of
 trips
 and
 travel
 distance,
 but
 also
 in
 the
 
number
 of
 vehicles
 owned
 (Pucher
 &
 Renne,
 2003).
 Finally,
 the
 poor
 are
 more
 likely
 to
 
utilize
 public
 transportation
 lowering
 their
 emissions
 (Glaeser
 &
 Kahn,
 2010).
 
While
 much
 of
 the
 literature
 on
 household
 consumption
 and
 CO2
 emissions
 does
 
take
 into
 consideration
 socioeconomic,
 demographic,
 and
 physical
 housing
 variables
 as
 
mentioned
 previously,
 there
 is
 a
 distinct
 lack
 of
 analysis
 across
 the
 spatial
 area
 of
 a
 city.
 

22
 

Spatial
 dynamics
 in
 urban
 structure
 and
 in
 socioeconomic
 and
 institutional
 forces
 can
 have
 
significant
 influence
 on
 where
 and
 how
 people
 live.
 
 
2.5.2 Race and ethnicity
Sociology
 and
 urban
 studies
 have
 already
 devoted
 extensive
 resources
 to
 
understanding
 housing
 and
 transportation
 inequality.
 Three
 determinants
 of
 housing
 are
 
generally
 considered:
 housing
 choice,
 economic
 decision-­‐making,
 and
 institutional
 factors.
 
Of
 these
 however,
 more
 weight
 has
 been
 given
 to
 these
 historical
 and
 modern
 institutional
 
forces
 that
 have
 segregated
 particular
 classes
 and
 races
 of
 people
 in
 American
 cities.
 While
 
outright
 discrimination
 is
 outlawed
 by
 the
 Fair
 Housing
 Act,
 other
 avenues
 of
 
discrimination
 that
 are
 more
 difficult
 to
 uncover
 and
 address
 still
 exist
 (Charles,
 2003;
 
Roscigno,
 Karafin,
 &
 Tester,
 2009).
 Situations
 of
 housing
 discrimination
 require
 the
 direct
 
action
 of
 the
 affected
 party,
 and,
 when
 considering
 the
 often
 marginalized
 populations
 
involved,
 many
 of
 whom
 do
 not
 have
 access
 to
 the
 resources
 or
 knowledge
 required
 to
 
undertake
 such
 a
 task,
 cases
 of
 housing
 discrimination
 are
 likely
 underreported
 (Roscigno
 
et
 al.,
 2009).
 Particular
 populations
 are
 more
 likely
 to
 face
 discrimination
 than
 others.
 Of
 
the
 most
 affected
 groups,
 poor
 blacks
 have
 been
 subject
 to
 significant
 and
 extreme
 
historical
 segregation
 perpetuated
 by
 outright
 discrimination
 by
 the
 housing
 sector.
 
From
 this
 historical
 and
 modern
 spatialization
 of
 race
 across
 the
 urban
 space
 there
 
emerges
 the
 possibility
 of
 a
 link
 between
 race
 and
 ethnicity
 and
 household
 CO2.
 For
 
example,
 the
 movement
 of
 higher
 income
 and
 predominantly
 white
 families
 (Charles,
 
2003)
 to
 the
 suburbs
 is
 associated
 with
 higher
 levels
 of
 CO2
 emissions
 (Kahn,
 2000).
 In
 
analyses
 of
 residential
 energy
 demand,
 the
 literature
 has
 looked
 at
 energy
 as
 being
 driven
 

23
 

by
 consumption
 of
 goods
 and
 services,
 ultimately
 examining
 behavior
 as
 the
 driving
 force.
 
Household
 consumption
 may
 vary
 by
 income,
 as
 the
 previous
 section
 can
 attest,
 but
 also
 by
 
class,
 and
 race
 and
 ethnicity
 (Lutzenhiser,
 1997).
 
 
Transportation
 inequity,
 closely
 linked
 to
 housing
 inequity,
 has
 different
 primary
 
institutional
 actors,
 and
 its
 actions
 are
 much
 less
 direct.
 For
 instance,
 the
 flight
 of
 the
 upper
 
classes,
 predominantly
 white,
 to
 the
 suburbs
 away
 from
 the
 core
 of
 the
 urban
 areas
 has
 
also
 shifted
 transportation
 dollars
 (Garrett
 &
 Taylor,
 1999).
 Funding
 is
 increasingly
 being
 
spent
 on
 commuter
 rails
 and
 other
 types
 of
 transport
 to
 connect
 suburbs
 and
 outlying
 
areas
 to
 jobs.
 The
 dollars
 spent
 per
 person
 is
 much
 higher
 in
 these
 cases
 than
 for
 inner-­‐city
 
transit.
 For
 marginalized
 populations
 that
 rely
 heavily
 on
 public
 transportation,
 this
 
transfer
 of
 funding
 can
 have
 important
 and
 lasting
 affects,
 essentially
 isolating
 these
 
communities
 further
 (Garrett
 &
 Taylor,
 1999;
 Pucher
 &
 Renne,
 2003).
 Predominately
 poor
 
as
 well,
 access
 to
 personal
 vehicles
 may
 not
 be
 possible.
 

 

(Kahn,
 2000)
 makes
 a
 connection
 between
 movement
 from
 inner
 city
 to
 suburbs
 as
 

driving
 up
 household
 transportation
 costs,
 time,
 and
 distance,
 and
 thus,
 CO2
 emissions.
 The
 
historically
 established
 movement
 of
 white
 households
 from
 the
 inner
 cities
 to
 the
 suburbs
 
is
 tied
 to
 a
 possible
 relationship
 between
 race,
 ethnicity,
 and
 household
 transportation
 CO2.
 
While
 private
 vehicle
 use
 does
 not
 vary
 significantly
 between
 race
 and
 ethnic
 groups,
 
minorities
 are
 more
 likely
 to
 utilize
 public
 transit,
 and
 thus
 decrease
 their
 transportation
 
CO2
 emissions
 (Glaeser
 et
 al.,
 2008;
 Pucher
 &
 Renne,
 2003).
 It
 has
 also
 been
 found
 that
 
minorities
 have
 longer
 commute
 times
 (Doyle
 &
 Taylor,
 2000;
 Shen,
 2000).
 These
 two
 
factors
 are
 confounding
 each
 other,
 making
 it
 difficult
 to
 synthesize
 conclusions
 related
 to
 

24
 

increased
 CO2
 emissions
 from
 those
 results;
 public
 transportation
 both
 increases
 commute
 
times
 and
 reduces
 CO2
 emissions.
 Research
 that
 disentangles
 commute
 times
 and
 public
 
transportation
 usage
 would
 be
 better
 able
 to
 address
 the
 impacts
 on
 CO2.
 In
 a
 similar
 vein,
 
(Antipova,
 Wang,
 &
 Wilmot,
 2011)
 analyzed
 land
 uses
 and
 socioeconomic
 variables
 as
 they
 
relate
 to
 commuting
 distances
 and
 times.
 Minority
 households
 were
 found
 to
 be
 
significantly
 related
 to
 commuting
 times,
 but
 no
 significant
 relationships
 were
 found
 
between
 minorities
 and
 commuting
 distance.
 If
 this
 difference
 in
 time
 is
 caused
 by
 using
 
public
 transportation,
 than
 this
 would
 indicate
 a
 negative
 relationship
 between
 minority
 
households
 and
 CO2
 emissions.
 (Brownstone
 &
 Golob,
 2009)
 found
 negative
 relationships
 
between
 race
 and
 ethnicity
 variables
 and
 vehicle
 fuel
 consumption,
 leading
 support
 to
 the
 
hypothesis
 that
 race
 and
 ethnicity
 leads
 to
 decreased
 transportation
 CO2
 emissions.
 
Association,
 positive
 or
 negative,
 with
 transportation
 CO2
 emissions
 and
 race
 or
 ethnicity
 is
 
difficult
 to
 synthesize,
 and
 there
 is
 little
 research
 that
 explicitly
 examines
 these
 
connections.
 The
 literature
 on
 transportation
 inequity,
 explicitly
 tied
 to
 housing
 inequity,
 
and
 its
 resulting
 conclusions
 of
 less
 vehicles
 owned,
 higher
 usage
 of
 public
 transportation,
 
and
 less
 fuel
 usage
 lends
 support
 to
 differing
 transportation
 CO2
 emissions
 among
 
minorities.
 
Ultimately
 transportation
 is
 connected
 back
 to
 housing,
 where
 people
 are
 located
 in
 
the
 space
 of
 the
 city.
 While
 studies
 have
 implicitly
 understood
 this
 impact
 of
 space
 by
 
understanding
 the
 affects
 of
 differing
 energy
 prices,
 variable
 climate,
 and
 general
 housing
 
structure,
 very
 few
 studies
 have
 looked
 at
 this
 at
 the
 small
 spatial
 scale.
 Without
 any
 direct
 
analysis
 of
 these
 socioeconomic
 factors,
 income
 (or
 class)
 and
 race/ethnicity,
 and
 enacting
 
we
 may
 not
 be
 able
 to
 synthesize
 a
 complete
 understanding
 of
 urban
 CO2.
 
25
 

The
 question
 then
 becomes,
 how
 does
 income
 and
 housing
 segregation,
 or
 the
 
spatial
 consequences
 of
 these
 variables,
 affect
 household
 CO2
 emissions?
 The
 relationships
 
between
 these
 variables
 are
 complex
 and
 difficult
 to
 tease
 out.
 On
 one
 hand,
 lack
 of
 access
 
to
 a
 personal
 automobile
 or
 increased
 usage
 of
 public
 transportation
 would
 result
 in
 less
 
CO2
 emissions
 related
 to
 transportation.
 On
 the
 other,
 housing
 next
 to
 accessible
 public
 
transportation
 can
 increase
 property
 values,
 causing
 gentrification
 and
 pushing
 
disadvantaged
 populations
 out.
 With
 no
 comprehensive
 analysis
 of
 the
 interactions
 
between
 these
 socioeconomic
 variables
 and
 household
 CO2
 we
 are
 left
 in
 the
 dark.
 
 

 

2.6 Conclusion
The
 literature
 examining
 the
 factors
 that
 influence
 energy
 driven
 CO2
 emissions
 is
 
deep;
 research
 abounds
 studying
 the
 influence
 of
 physical
 characteristics
 of
 housing
 and
 
urban
 structure
 on
 household
 CO2
 emissions.
 However,
 a
 distinct
 lack
 of
 research
 on
 
smaller
 scales
 means
 urban
 dynamics
 haven’t
 been
 thoroughly
 examined.
 Recent
 advances
 
in
 small-­‐scale
 CO2
 emission
 modeling
 has
 opened
 up
 more
 possibilities
 for
 analysis
 at
 
scales
 smaller
 than
 a
 city.
 This
 allows
 the
 spatial
 distribution
 of
 CO2
 emissions
 across
 a
 city
 
to
 be
 analyzed
 and
 for
 more
 careful
 analysis
 of
 the
 drivers
 of
 urban
 anthropogenic
 CO2
 
emissions.
 Additionally,
 because
 cities
 are
 both
 geographically
 located
 in
 relatively
 small
 
areas,
 and
 because
 cities
 are
 the
 most
 local
 unit
 of
 governance,
 there
 is
 less
 variability
 
across
 its
 footprint
 by
 some
 large
 biophysical
 drivers.
 An
 analysis
 could
 better
 control
 for
 
differences
 in
 climate
 and
 policy
 and
 perhaps
 other
 exogenous
 variables.
 Given
 the
 
implications
 of
 climate
 change
 and
 the
 continuing
 efforts
 of
 local
 action
 on
 that
 issues,
 a
 
26
 

better
 and
 more
 nuanced
 understanding
 of
 urban
 carbon
 dioxide
 emissions
 could
 be
 
beneficial
 in
 informing
 policy.
 Accordingly,
 this
 research
 proses
 to
 examine
 the
 
socioeconomic
 drivers
 of
 CO2
 emissions
 within
 the
 boundary
 of
 a
 major
 metropolitan
 area.
 

27
 

Chapter 3: Methods
3.1 Aim and Objectives of Research
The
 main
 objective
 of
 this
 study
 is
 to
 analyze
 and
 address
 the
 influence
 of
 household
 
socioeconomic
 variables
 on
 household
 CO2
 emissions
 at
 the
 sub-­‐city-­‐level
 by
 incorporating
 
and
 identifying
 the
 influence
 of
 space;
 that
 is,
 the
 interactions
 of
 these
 variables
 and
 other
 
unmeasured
 factors
 between
 neighborhoods.
 This
 study
 has
 three
 main
 objectives.
 First,
 
the
 influence
 of
 spatiality
 in
 the
 analysis
 of
 neighborhood-­‐level
 CO2
 emissions
 across
 a
 city
 
will
 be
 specifically
 controlled
 for
 and
 examined.
 Second,
 this
 study
 will
 analyze,
 and
 
attempt
 to
 find
 further
 support
 for,
 the
 influence
 of
 household
 income
 on
 household
 CO2
 
emissions.
 Third,
 this
 research
 will
 attempt
 to
 analyze
 the
 influence
 of
 race
 and
 ethnicity
 of
 
households
 on
 household
 CO2
 emissions.
 Finally,
 all
 of
 these
 analyses
 will
 be
 performed
 
separately
 for
 total
 household
 CO2
 emissions
 (which
 consists
 of
 residence
 household
 CO2
 
emissions
 and
 transportation
 CO2
 emissions),
 as
 well
 as
 for
 residence
 household
 CO2
 
emissions
 and
 transportation
 CO2
 emissions,
 in
 order
 to
 examine
 the
 differing
 relationships
 
among
 these
 household
 sectors.
 
These
 objectives
 can
 be
 broken
 down
 into
 three
 general
 hypotheses,
 and
 further
 
defined
 by
 the
 three
 CO2
 variables,
 total,
 transportation
 and
 residence
 household
 CO2
 
emissions,
 creating
 9
 total
 hypotheses:
 
1)
 Income
 

 

Household
 Income
 has
 a
 positive
 relationship
 with
 total
 household
 CO2
 
emissions,
 transportation
 emissions,
 and
 residence
 emissions,
 respectively.
 

28
 

2)
 Race
 and
 ethnicity
 

 

The
 race
 and
 ethnicity
 of
 a
 household
 has
 a
 significant
 relationship
 with
 total
 
household
 CO2
 emissions,
 transportation
 emissions,
 and
 residence
 emissions,
 
respectively.
 
3)
 Spatial
 variables
 

 

For
 the
 total
 household
 CO2,
 transportation,
 and
 residence
 statistical
 models,
 
the
 spatial
 lag
 regression
 will
 produce
 a
 better
 overall
 fit
 than
 the
 OLS
 
regression.
 

To
 test
 these
 hypotheses,
 data
 was
 gathered
 from
 independent
 outside
 sources
 and
 
organized
 at
 the
 census
 tract
 level.
 OLS
 regression,
 exploratory
 spatial
 data
 analyses
 and
 
spatial
 lag
 regression
 analyses
 were
 performed
 on
 the
 resultant
 dataset.
 

 

3.2 Study Area
Data
 availability
 determined
 that
 the
 analyses
 would
 be
 carried
 out
 for
 the
 city
 of
 
Indianapolis,
 IN.
 Indianapolis
 is
 the
 capitol
 of
 Indiana
 and
 the
 county
 seat
 of
 Marion
 
County.
 Indianapolis
 and
 Marion
 County
 form
 a
 consolidated
 city-­‐county
 –
 they
 have
 
merged
 into
 one
 single
 jurisdiction,
 termed
 Unigov.
 During
 this
 merger,
 some
 previously
 
incorporated
 cities
 within
 Marion
 County
 elected
 to
 retain
 their
 autonomy
 from
 Unigov.
 
Similarly,
 some
 towns,
 although
 now
 included
 within
 Unigov,
 retain
 some
 independent
 
government
 functions.
 The
 term
 balance
 –
 as
 used
 in
 Indianapolis
 (balance)
 –
 is
 a
 census
 
term
 used
 to
 designate
 the
 area
 of
 Indianapolis-­‐Marion
 County
 that
 excludes
 these
 
particular
 cities
 and
 towns.
 As
 of
 2010
 the
 population
 of
 Indianapolis
 (balance)
 was
 
820,445,
 the
 12th
 largest
 city
 in
 the
 United
 States.
 This
 analysis
 however,
 utilizes
 data
 from
 
 

29
 

2000
 when
 the
 population
 of
 Indianapolis
 (balance)
 was
 781,870.
 The
 population
 of
 
Marion
 County
 in
 2000
 was
 860,454.
 The
 county
 is
 largely
 urbanized,
 with
 99%
 of
 the
 
population
 residing
 with
 census
 designated
 urban
 areas.
 Indianapolis
 is
 much
 less
 dense
 
than
 many
 similarly
 populated
 cities
 such
 as
 San
 Francisco,
 CA,
 but
 is
 similar
 to
 Phoenix,
 AZ
 
in
 density.
 There
 are
 a
 total
 of
 212
 census
 tracts
 in
 all
 of
 Marion
 County,
 however
 only
 210
 
are
 employed
 in
 the
 analysis
 because
 of
 insufficient
 data
 for
 two
 of
 the
 tracts
 (Figure
 1).
 
Because
 of
 the
 close
 geographic
 and
 demographic
 similarities
 between
 Indianapolis
 
(balance)
 and
 the
 entirety
 of
 Marion
 County,
 this
 analysis
 will
 be
 conducted
 on
 the
 entire
 
county.
 


 

 Figure
 1:
 Inset
 map
 of
 Marion
 County
 –
 Indianapolis
 in
 the
 state
 of
 Indiana.
 There
 are
 212
 census
 tracts
 in
 the
 
county,
 however
 only
 210
 are
 used
 in
 this
 analysis.
 Unused
 census
 tracts
 are
 shown
 with
 white
 hatching.
 
 

30
 

3.3 Data
3.3.1 Variables
3.3.1.1
 Residence
 CO2
 Emission
 Data
 
Household
 CO2
 data
 was
 gathered
 for
 two
 separate
 sources:
 emissions
 associated
 
with
 the
 residence
 and
 emissions
 associated
 with
 household
 transportation.
 First,
 
household
 residence
 CO2
 was
 obtained
 from
 the
 Hestia
 Project.
 They
 used
 downscale
 
modeling
 techniques
 to
 determine
 building-­‐level
 CO2
 emissions
 of
 the
 residential,
 
commercial,
 and
 industrial
 sectors
 for
 the
 entirety
 of
 Marion
 County
 in
 2002
 from
 county
 
estimates
 of
 CO2
 emissions
 (see
 discussion
 below).
 Residences
 were
 identified
 using
 
building
 parcel
 data
 from
 the
 Marion
 County
 Assessor’s
 Office
 (Gurney
 et
 al.,
 2012).
 The
 
downscaling
 process
 utilized
 in
 the
 Hestia
 Project
 defined
 general
 physical
 factors
 of
 each
 
residential
 building
 such
 as
 age
 and
 type
 (e.g.
 apartments
 versus
 single-­‐family
 detached
 
home)
 as
 a
 function
 of
 energy
 use
 intensity
 (EUI),
 that
 is,
 the
 energy
 used
 per
 unit
 floor
 
area.
 Each
 residential
 building
 was
 placed
 into
 eight
 EUI
 categories
 and
 its
 total
 energy
 use
 
was
 found
 through
 its
 EUI
 and
 its
 size
 (Zhou
 &
 Gurney,
 2010).
 In
 general,
 this
 modeled
 
function
 corresponded
 to
 higher
 EUI
 and
 thus
 higher
 CO2
 emissions
 with
 older
 and
 larger
 
buildings.
 This
 downscaling
 process
 does
 not
 consider
 particular
 unique
 characteristics
 
that
 are
 specific
 to
 each
 individual
 building
 itself,
 such
 as
 remodels
 and
 retrofits
 or
 the
 
quality
 of
 building
 that
 could
 potentially
 impact
 CO2
 emissions.
 
For
 its
 CO2
 input,
 the
 Hestia
 Project
 used
 county-­‐level
 CO2
 emission
 sector
 estimates
 
from
 the
 Vulcan
 Project,
 another
 downscaling
 endeavor
 which
 itself
 utilized
 projections
 
from
 Environmental
 Projection
 Agency
 and
 state-­‐level
 reporting
 on
 energy
 utilities
 

31
 

(Gurney
 et
 al.,
 2012;
 Zhou
 &
 Gurney,
 2010).
 Mapping
 CO2
 emissions
 at
 a
 scale
 smaller
 than
 
the
 city
 scale
 is
 relatively
 new
 and
 thus
 very
 little
 to
 no
 data
 exists
 at
 small-­‐scale
 levels.
 CO2
 
data
 from
 the
 Hestia
 Project
 was
 the
 limiting
 factor
 that
 necessitated
 analysis
 of
 
Indianapolis,
 IN
 because
 it
 was
 the
 only
 source
 from
 which
 small-­‐scale
 residential
 CO2
 
emissions
 could
 be
 obtained.
 
3.3.1.2
 Transportation
 CO2
 Emissions
 Data
 
Second,
 data
 for
 CO2
 emissions
 attributed
 to
 household
 transportation
 was
 acquired
 
with
 permission
 from
 the
 H
 +
 T
 Affordability
 Index
 created
 by
 the
 Center
 for
 Neighborhood
 
Technology.
 The
 2009
 H
 +
 T
 Affordability
 Index
 uses
 data
 from
 the
 Census
 Bureau’s
 2009
 
American
 Community
 Survey
 (ACS)
 5-­‐year
 (2005-­‐2009)
 yearly
 estimates
 as
 its
 primary
 
dataset
 to
 model
 housing
 and
 transportation
 costs
 at
 the
 census
 block
 group
 level.
 
Transportation
 costs
 were
 modeled
 as
 part
 of
 a
 houses
 location
 based
 on
 auto
 ownership,
 
auto
 use,
 and
 transit
 use.
 Vehicle
 miles
 traveled
 were
 calculated
 as
 part
 of
 auto
 use,
 and
 
CO2
 emissions
 associated
 with
 transportation
 per
 household
 were
 thus
 calculated
 from
 
these
 models.
 
Socioeconomic
 data
 was
 procured
 from
 the
 U.S.
 Census
 Bureau
 for
 the
 2000
 Census
 
at
 the
 census
 tract
 level
 for
 Marion
 County.
 The
 census
 is
 designed
 to
 obtain
 counts
 of
 the
 
entire
 U.S.
 population
 as
 well
 as
 additional
 demographic
 characteristics
 such
 as
 race
 and
 
ethnicity.
 Demographic
 data
 is
 thus
 accurately
 available
 for
 the
 entire
 United
 States
 at
 
extremely
 small
 scales.
 ACS
 data
 was
 deemed
 unfit
 for
 race/ethnicity
 data
 because
 of
 large
 
margins
 of
 error
 at
 the
 small
 spatial
 scales
 required
 for
 this
 analysis.
 Independent
 variables
 

32
 

utilized
 for
 this
 analysis
 include
 median
 income,
 race
 and
 ethnicity
 (Asian
 and
 black
 
households),
 median
 age,
 and
 household
 size
 all
 received
 from
 the
 U.S.
 Census
 Bureau.
 
3.3.1.3
 Spatial
 Data
 
The
 level
 of
 analysis
 is
 the
 census
 tract,
 a
 geographic
 area,
 designated
 to
 be
 between
 
2,500
 to
 8,000
 people,
 by
 local
 census
 statistical
 areas
 committees
 using
 guidelines
 
established
 by
 the
 U.S.
 Census
 Bureau
 (United
 States
 Census
 Bureau,
 2000).
 Marion
 County
 
has
 212
 census
 tracts
 in
 total,
 but
 only
 210
 were
 utilized
 in
 this
 analysis
 because
 of
 missing
 
data.
 One
 census
 tract
 was
 omitted
 because
 of
 missing
 census
 data
 (as
 shown
 in
 both
 the
 
2000
 Census
 and
 2009
 ACS),
 the
 other
 because
 of
 missing
 residence
 CO2
 data.
 Shapefiles
 
for
 Marion
 County
 census
 tracts
 were
 procured
 from
 ESRI
 for
 the
 2000
 Census.
 These
 files
 
were
 transformed
 into
 GIS
 shapefiles
 by
 ESRI
 using
 the
 U.S.
 Census
 Bureau’s
 TIGER
 
database.
 
3.3.2 Data Preparations
Variables
 were
 compiled
 into
 a
 spatial
 database
 using
 ArcMap
 10.
 While
 
socioeconomic
 data
 from
 the
 U.S.
 Census
 Bureau
 was
 obtained
 at
 the
 census
 tract
 scale,
 
both
 CO2
 emissions
 for
 residence
 and
 transportation
 were
 reported
 at
 smaller
 scales.
 
 
Residential
 CO2
 data
 as
 gathered
 from
 the
 Hestia
 Project
 was
 organized
 in
 a
 GIS
 shapefile
 
with
 individual
 polygons
 for
 each
 building.
 A
 spatial
 join
 was
 performed
 on
 this
 data
 with
 
the
 Marion
 County
 census
 tract
 shapefile
 (obtained
 from
 the
 ESRI
 Census
 2000
 TIGER/Line
 
Shapefiles
 database)
 using
 the
 center
 of
 each
 building
 polygon
 as
 a
 bias-­‐free
 criterion
 to
 
aggregate
 the
 buildings
 to
 the
 census
 tract.
 As
 part
 of
 this
 operation
 CO2
 emissions
 were
 
summed
 from
 each
 building
 polygon
 to
 create
 census
 tract
 totals
 of
 residential
 CO2,
 which
 

33
 

were
 were
 then
 divided
 by
 the
 number
 of
 households
 for
 each
 tract,
 obtaining
 average
 
household
 residence
 CO2
 emissions.
 
 Transportation
 CO2
 data
 was
 organized
 at
 the
 census
 
block
 group
 level.
 Block
 groups
 are
 the
 statistical
 spatial
 groups
 organized
 within
 census
 
tracts.
 Data
 was
 transferred
 into
 Excel
 where
 the
 block
 groups
 and
 their
 associated
 
attributes
 were
 aggregated
 through
 summation
 to
 their
 respective
 census
 tracts.
 
Subsequently,
 the
 transportation
 CO2
 data
 was
 moved
 into
 ArcMap
 10
 and
 joined
 to
 the
 
census
 tract
 shapefile.
 Residence
 CO2
 emissions
 per
 household
 and
 transportation
 CO2
 
emissions
 per
 household
 data
 were
 summed
 to
 create
 total
 CO2
 emissions
 per
 household
 
per
 census
 tract.
 All
 CO2
 emissions
 are
 reported
 in
 average
 CO2
 emissions
 per
 household
 
per
 census
 tract.
 The
 polygon
 census
 tract
 feature
 class
 thus
 has
 associated
 with
 it
 that
 
tract’s
 average
 household
 residential
 CO2,
 average
 household
 transportation
 CO2,
 average
 
total
 household
 CO2,
 median
 household
 income,
 distribution
 of
 race
 and
 ethnicity
 
(percentage
 Asian
 and
 black
 households),
 average
 household
 size,
 and
 average
 age.
 
Average
 household
 CO2
 data
 is
 reported
 in
 metric
 tons
 (t)
 of
 CO2
 emitted
 per
 year.
 

 

3.4 Limitations
There
 were
 several
 limitations
 to
 this
 study.
 First,
 data
 requirements
 have
 thus
 far
 
held
 back
 extensive
 study
 at
 the
 neighborhood
 scale.
 The
 city
 of
 Indianapolis,
 IN
 was
 
chosen
 for
 this
 study
 because
 the
 type
 of
 fine-­‐scale
 data
 required
 was
 only
 freely
 and
 
readily
 available
 for
 that
 city.
 If
 further
 analysis
 is
 to
 be
 done
 on
 other
 cities,
 fine-­‐scale
 data
 
will
 have
 to
 be
 produced
 first,
 which
 is
 an
 expensive,
 extensive,
 and
 difficult
 task.
 
Hopefully,
 with
 continuing
 advances
 in
 modeling,
 that
 will
 become
 possible.
 This
 lack
 of
 
34
 

accessibility
 has
 implications
 for
 this
 current
 analysis,
 however.
 Due
 to
 these
 difficulties
 
with
 fine-­‐scale
 data,
 several
 additional
 limitations
 were
 imposed
 on
 the
 analysis
 as
 
discussed
 over
 the
 next
 paragraphs.
 
Second,
 the
 type
 of
 data
 utilized
 in
 this
 study
 cannot
 account
 for
 behavioral
 
differences.
 Household
 emissions
 for
 transportation
 CO2
 and
 residence
 CO2
 were
 derived
 
from
 different
 modeling
 processes
 and
 from
 different
 sources.
 These
 models
 did
 not
 
necessarily
 take
 into
 account
 behavior
 factors.
 For
 example,
 the
 residential
 CO2
 data
 
derived
 from
 The
 Hestia
 Project
 was
 created
 using
 downscaled
 CO2
 emissions
 at
 the
 
building
 scale
 for
 the
 commercial,
 residential,
 and
 industrial
 sectors
 of
 Indianapolis,
 IN.
 The
 
nature
 of
 the
 downscale
 modeling
 process,
 utilizing
 large-­‐scale
 characteristics
 such
 as
 year
 
and
 square
 footage,
 meant
 individual
 changes
 to
 buildings
 could
 not
 be
 factors
 of
 that
 
model.
 Homes
 that
 had
 upgraded
 to
 energy
 efficient
 windows
 or
 insulation
 for
 example,
 
would
 not
 see
 this
 reflected
 in
 their
 CO2
 emissions.
 
Third,
 the
 data
 used
 in
 this
 analysis
 does
 not
 cover
 the
 totality
 of
 emissions
 
associated
 with
 households.
 Consumption
 is
 not
 captured
 in
 this
 modeling
 process
 at
 all.
 
There
 is
 an
 entire
 section
 of
 economics
 research
 devoted
 to
 this
 issue,
 that
 will
 not
 be
 
discussed
 here,
 but
 this
 is
 a
 significant
 amount
 of
 CO2
 emissions
 to
 not
 include
 in
 the
 
modeling.
 Additionally,
 the
 residence
 CO2
 data
 was
 derived
 from
 point
 emissions
 only.
 This
 
means
 natural
 gas
 emissions
 were
 modeled
 to
 the
 households
 as
 would
 be
 used
 in
 central
 
heating,
 for
 example.
 But
 electricity
 data,
 of
 which
 the
 point
 source
 of
 fuel
 combustion
 is
 a
 
power
 plant,
 was
 attributed
 to
 that
 power
 plant
 in
 the
 Hestia
 Project
 and
 is
 not
 attributed
 
to
 the
 household.
 However,
 because
 CO2
 emissions
 were
 attributed
 to
 all
 households,
 

35
 

regardless
 of
 their
 actual
 consumption
 of
 natural
 gas
 for
 heating,
 this
 analysis
 may
 still
 pick
 
up
 on
 overall
 trends
 and
 patterns
 in
 the
 relationships
 between
 variables.
 
Finally,
 the
 data
 obtained
 for
 analysis
 was
 from
 different
 years.
 Explanatory
 
socioeconomic
 variables
 were
 obtained
 from
 the
 2000
 Census.
 Household
 transportation
 
CO2
 was
 modeled
 using
 data
 from
 the
 2009
 ACS
 5-­‐year
 (2005-­‐2009)
 estimates,
 although
 
the
 data
 was
 organized
 using
 2000
 Census
 boundaries.
 Household
 residence
 CO2
 was
 
modeled
 using
 emissions
 estimates
 for
 2002.
 These
 differences
 are
 insurmountable
 for
 this
 
particular
 study;
 analysis
 needs
 necessitated
 these
 datasets.
 The
 difference
 between
 these
 
two
 sources
 and
 the
 2009
 ACS
 and
 resultant
 transportation
 CO2
 emissions
 may
 be
 slightly
 
difficult
 to
 justify,
 but
 since
 that
 dataset
 utilized
 2000
 Census
 boundaries,
 not
 to
 discount
 
the
 intensive
 time
 demands
 in
 any
 attempt
 to
 project
 onto
 2010
 Census
 boundaries,
 it
 was
 
deemed
 tolerable.
 The
 difference
 between
 the
 2000
 Census
 data
 and
 the
 2002
 residence
 
CO2
 emissions
 is
 more
 acceptable.
 

 

3.5 Statistical Analysis
Neighborhoods
 are
 not
 disconnected
 units.
 Spatial
 dependency
 exists
 between
 
contiguous
 neighborhoods,
 and
 interactions
 between
 them
 must
 be
 taken
 into
 
consideration
 when
 performing
 statistical
 analyses
 or
 the
 reliability
 of
 results
 may
 be
 
overestimated.
 According
 to
 (Ward
 &
 Gleditsch,
 2008),
 “ignoring
 spatial
 dependence
 will
 
tend
 to
 underestimate
 the
 real
 variance
 in
 the
 data.”
 To
 assess
 whether
 spatiality
 exists
 
within
 the
 variables,
 a
 spatial
 weights
 matrix
 is
 constructed
 as
 a
 descriptor
 of
 the
 spatial
 

36
 

relationships
 between
 individuals,
 in
 this
 case
 individuals
 being
 census
 tracts.
 The
 spatial
 
weights
 matrix
 can
 be
 structured
 in
 several
 different
 ways,
 either
 utilizing
 distances
 
between
 individuals
 or
 through
 assessing
 shared
 boundaries
 between
 neighbors.
 The
 
shapefile
 containing
 the
 Marion
 County
 census
 tracts
 and
 associated
 variables
 was
 
transferred
 to
 OpenGeoDa
 1.2.0
 (2012)
 for
 exploratory
 spatial
 analysis
 and
 to
 construct
 a
 
spatial
 weights
 matrix
 to
 employ
 within
 these
 analyses.
 For
 this
 study
 a
 boundary
 based
 
matrix
 was
 chosen,
 specifically
 a
 queen
 contiguity
 based
 spatial
 weights
 matrix
 was
 chosen
 
over
 the
 rook
 contiguity
 based
 spatial
 weights
 matrix
 as
 a
 better
 overall
 fit.
 Exploratory
 
analysis
 showed
 minimal
 differences
 in
 final
 regression
 fit
 between
 the
 queen-­‐based
 
contiguity
 matrix
 and
 rook-­‐based
 contiguity
 matrix,
 but
 the
 distribution
 of
 connections
 was
 
found
 to
 be
 more
 normal
 in
 the
 queen
 matrix
 than
 the
 rook.
 This
 along
 with
 considerations
 
of
 possible
 connection
 between
 census
 tracts,
 pointed
 towards
 selecting
 the
 queen
 matrix.
 
This
 matrix
 was
 constructed
 using
 GeoDa.
 

 A
 typical
 regression
 can
 be
 expressed
 as
 

 

𝑦 = 𝑥𝛽 + 𝜀,
 

(
 1
 )
 

where
 y
 is
 the
 dependent
 variable,
 x
 is
 the
 independent
 variable,
 β
 is
 the
 slope
 of
 the
 
regression
 equation,
 representing
 the
 relationship
 between
 the
 x
 and
 y
 variables,
 and
 ε
 
represents
 the
 error
 of
 the
 equation.
 The
 spatial
 lag
 regression
 model
 incorporates
 the
 
spatial
 autoregressive
 term,
 𝜌𝑊𝑦,
 on
 the
 right
 side,
 accounting
 for
 the
 influence
 of
 the
 
neighbor
 on
 each
 census
 tract,
 an
 influence
 that
 is
 actually
 a
 weighted
 average
 of
 the
 
surrounding
 neighbors.
 Thus,
 following
 Anselin
 (1988),
 

37
 


 

𝑌 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜀.
 

(
 2
 )
 

In
 this
 spatial
 lag
 model
 ρ
 is
 the
 autoregressive
 parameter
 and
 W
 is
 the
 constructed
 spatial
 
weights
 matrix,
 which
 in
 the
 case
 of
 this
 study
 is
 the
 queens
 contiguity
 spatial
 weights
 
matrix
 as
 discussed
 earlier,
 whereby
 both
 parameters
 work
 on
 a
 right
 side
 y
 variable
 to
 
complete
 the
 spatial
 autoregressive
 term.
 Both
 the
 Y
 and
 X
 are
 in
 matrix
 form,
 as
 consistent
 
with
 the
 rest
 of
 the
 model
 (Ward
 &
 Gleditsch,
 2008).
 

 

Three
 regression
 models
 were
 created:
 one
 each
 for
 average
 total
 household
 CO2
 

(total
 CO2),
 average
 household
 transportation
 CO2
 (transportation
 CO2),
 and
 average
 
household
 residence
 CO2
 (residence
 CO2).
 Ordinary
 Least
 Squares
 (OLS)
 regressions
 were
 
carried
 out
 on
 the
 three
 models.
 The
 resultant
 regression
 residuals
 were
 tested
 for
 spatial
 
autocorrelation
 using
 Moran’s
 I
 test.
 Positive
 spatial
 autocorrelation
 in
 the
 residuals
 
revealed
 the
 presence
 of
 spatial
 dependence
 in
 the
 variables.
 According
 to
 Lagrange
 
Multiplier
 tests
 ran
 on
 the
 OLS
 regressions
 (Equation
 1),
 and
 through
 theoretical
 
considerations,
 the
 spatial
 lag
 model
 (Equation
 2)
 was
 selected
 over
 the
 spatial
 error
 
model,
 another
 type
 of
 spatial
 regression
 where
 the
 influence
 of
 space
 is
 seen
 to
 be
 an
 
error
 and
 thus
 treated
 as
 such.
 The
 data
 and
 spatial
 matrix
 were
 transferred
 to
 Stata/SE
 
12.0
 (2011)
 for
 use
 in
 the
 Stata
 module
 SPMLREG
 (Jeanty,
 2010).
 
 Spatial
 lag
 regressions
 
were
 performed
 in
 Stata
 on
 the
 three
 CO2
 models
 using
 the
 queen
 contiguity
 spatial
 
weights
 matrix
 to
 construct
 a
 spatially
 lagged
 CO2
 variable
 to
 account
 for
 spatial
 
dependencies.
 
Persistant
 heteroskedasticity
 among
 the
 residuals,
 even
 after
 the
 log
 transformation
 
of
 median
 income
 lent
 support
 for
 robust
 standard
 errors
 over
 regular
 standard
 errors.
 
38
 

Huber-­‐white
 estimators
 (robust
 standard
 errors)
 can
 be
 use
 to
 compensate
 for
 the
 possible
 
effects
 of
 heteroskedasticity
 and
 non-­‐normality
 of
 residuals
 in
 overestimating
 standard
 
errors,
 and
 thus,
 p-­‐values,
 leading
 to
 skewed
 inferences.
 The
 inclusion
 of
 these
 robust
 
standard
 errors
 does
 not
 affect
 coefficients.
 
Tests
 were
 carried
 on
 the
 residuals
 of
 all
 the
 models
 to
 assess
 for
 spatial
 
dependency.
 All
 regression
 results
 were
 transferred
 into
 GeoDa
 to
 perform
 Local
 Moran’s
 I
 
on
 the
 residuals.
 


 

39
 

Chapter 4: Results
4.1 Descriptive Statistics

 

The
 dependent
 and
 independent
 variables
 exhibit
 clear
 variability
 and
 spatial
 

clustering
 throughout
 Marion
 County.
 Table
 1
 provides
 quick
 quartile
 descriptions
 of
 each
 
variable.
 The
 dependent
 variable
 total
 household
 CO2
 is
 a
 summation
 of
 household
 
transportation
 and
 residence
 CO2
 emissions.
 Evident
 from
 Table
 1
 is
 the
 discrepancy
 
between
 transportation
 and
 residence
 CO2
 emissions:
 at
 the
 low-­‐end
 residence
 CO2
 barely
 
registers
 in
 at
 least
 one
 census
 tract.
 This
 is
 likely
 due
 to
 to
 issues
 in
 the
 downscale
 
modeling
 process.
 
 

 


 
Dependent
 
Variables
 
Total
 CO2
 (t)
 
Transportation
 CO2
 (t)
 
Residence
 CO2
 (t)
 
Independent
 Variables
 
Median
 income
 ($)
 
Median
 age
 
Average
 household
 size
 
%
 Asian
 
%
 Black
 

Five
 Number
 Summary
 from
 Across
 Census
 Tracts
 
Minimum
 
Q1
 
Median
 
Q3
 
Maximum
 
4.564
 
8.238
 
8.717
 
9.481
 
13.067
 
4.438
 
7.215
 
7.817
 
8.243
 
10.976
 
0.003
 
0.750
 
1.081
 
1.435
 
5.287
 

 

13,125
 
  29,798
 
  35,547.5
 
  49,794.5
 
 
21.9
 
30.7
 
34.0
 
37.6
 
1.39
 
2.18
 
2.44
 
2.63
 
0.00
 
0.27
 
0.65
 
1.44
 
0.09
 
3.03
 
12.13
 
39.74
 

133,479
 
51.8
 
3.20
 
7.79
 
98.17
 

Table
 1:
 Five
 number
 summary
 of
 independent
 and
 dependent
 variables.
 Presented
 are
 the
 minimum,
 first
 
quartile,
 median,
 third
 quartile,
 and
 maximum
 value
 across
 all
 census
 tracts.
 


 

40
 

Figure
 2:
 Average
 household
 transportation
 CO2
 per
 census
 tract
 in
 Indianapolis,
 IN.
 


 


 
Figure
 3:
 Average
 household
 residence
 CO2
 per
 census
 tract
 in
 Indianapolis,
 IN.
 

41
 


 
Figure
 4:
 Average
 total
 household
 CO2
 per
 census
 tract
 in
 Indianapolis,
 IN
 


 

The
 difference
 at
 the
 median
 between
 transportation
 CO2
 and
 residence
 CO2
 is
 
approximately
 7
 t.
 Variability
 within
 the
 transportation
 and
 residence
 CO2
 variable
 is
 
evident,
 the
 range
 for
 each
 being
 approximately
 5t
 and
 6t
 respectively,
 while
 total
 
household
 CO2
 sees
 a
 range
 of
 around
 8
 t.
 
 Examination
 of
 the
 dependent
 variable
 across
 
their
 respective
 maps
 reveals
 evident
 visual
 clustering.
 Transportation
 CO2
 increases
 as
 
one
 moves
 away
 from
 the
 center
 of
 Marion
 County
 (Figure
 2).
 Residence
 CO2
 exhibits
 less
 
easily
 identifiable
 clustering,
 but
 several
 areas
 of
 clustering
 do
 exist
 at
 several
 places
 
(Figure
 3).
 Total
 CO2,
 an
 amalgamation
 
 of
 both
 variables,
 has
 notable
 clustering
 around
 the
 
outskirts
 of
 Marion
 County,
 especially
 near
 the
 southern
 edge,
 while
 the
 center
 also
 
exhibits
 apparent
 high
 levels
 of
 low-­‐value
 CO2
 emission
 clustering
 (Figure
 4).
 

42
 

Race
 and
 ethnicity
 ranges
 and
 clusters
 noticeably
 across
 the
 county.
 Asian
 
households,
 absent
 entirely
 from
 some
 census
 tracts,
 are
 not
 present
 in
 considerable
 
numbers
 across
 Marion
 County.
 For
 example,
 the
 median
 percentage
 of
 Asian
 households
 
per
 census
 tract
 is
 0.65%,
 with
 a
 maximum
 being
 approximately
 7.8%
 of
 Asian
 households
 
per
 tract.
 Those
 few
 census
 tracts
 with
 significant
 Asian
 populations
 are
 located
 
predominantly
 in
 two
 clusters,
 one
 just
 northwest
 of
 the
 center
 of
 Indianapolis
 and
 then
 an
 
additional
 sector
 that
 is
 directly
 north
 of
 the
 center,
 at
 the
 boundary
 of
 the
 county
 (Figure
 
5).
 A
 clear
 contrary
 to
 Asian
 households,
 black
 households
 range
 from
 approximately
 
0.08%
 to
 just
 over
 98%.
 The
 map
 of
 black
 households
 (Figure
 6)
 indicates
 an
 area
 of
 
considerable
 clustering
 just
 north
 of
 the
 center
 of
 Marion
 County,
 that
 does
 not
 quite
 reach
 
the
 county
 line,
 and
 where
 concentrations
 of
 black
 households
 are
 around
 50%.
 
Income
 also
 reveals
 significant
 variation
 and
 clustering
 throughout
 Marion
 County.
 
Especially
 stark
 is
 the
 range
 of
 the
 median
 income
 of
 households
 per
 census
 tract
 across
 
census
 tracts,
 from
 $13,125
 to
 $133,479.
 Median
 household
 income
 for
 Marion
 County
 was
 
$40,421
 in
 2000,
 close
 to
 the
 2000
 national
 median
 income
 of
 $41,994.
 Median
 household
 
income
 across
 census
 tracts
 for
 Marion
 County
 is
 $35,547.50,
 a
 discrepancy
 due
 to
 
differences
 in
 the
 scale
 of
 analysis:
 each
 census
 tract
 has
 varying
 number
 of
 households.
 
Examining
 the
 map
 for
 income
 (Figure
 7)
 the
 clustering
 is
 especially
 evident
 along
 the
 
border
 of
 the
 county,
 where
 high
 levels
 of
 income
 per
 household
 are
 in
 clear
 contrast
 with
 
the
 center
 of
 Marion
 County
 where
 income
 per
 household
 is
 considerably
 lower.
 

43
 

Figure
 5:
 Percentage
 of
 Asian
 households
 per
 census
 tract
 in
 Indianapolis,
 IN.
 

Figure
 6:
 Percentage
 of
 black
 households
 per
 census
 tract
 in
 Indianapolis,
 IN.
 


 


 

44
 

Figure
 7:
 Median
 household
 income
 per
 census
 tract
 of
 Indianapolis,
 IN.
 


 

4.2 Statistical Analysis
Visual
 inspection
 of
 the
 maps
 illustrating
 the
 average
 CO2
 –
 total,
 transportation,
 
and
 residence
 –
 of
 households
 per
 census
 tract
 indicate
 spatial
 clustering
 in
 fairly
 distinct
 
patterns.
 Moran’s
 I
 statistical
 tests
 can
 reveal
 the
 extent
 and
 significance
 of
 these
 spatial
 
patterns,
 statistically
 determining
 when
 clustering
 or
 dispersal
 of
 variables
 is
 present.
 The
 
Moran’s
 I
 was
 ran
 on
 each
 of
 the
 CO2
 variables,
 and
 indicated
 significant
 spatial
 clustering
 
among
 all
 three,
 supporting
 the
 use
 of
 spatial
 lag
 models
 to
 control
 for
 that
 spatial
 
autocorrelation
 among
 residuals
 (see
 Appendix
 A
 for
 results).
 
 

 
45
 

Moran's
 I
 

 
OLS
 
Total
 CO2
 


 
 
0.267
 *
 

Transportation
 CO2
 

0.484
 *
 

Residence
 CO2
 

0.278
 *
 

Spatial
 Lag
 
Total
 CO2
 
Transportation
 CO2
 
Residence
 CO2
 


 
 
 
0.022
 
 
-­‐0.029
 
 
 
0.096
 *
 

Table
 2:
 Moran's
 I
 test
 for
 spatial
 dependency
 
among
 the
 residuals
 of
 the
 regression
 models.
 
P-­‐values
 are
 based
 on
 replications
 where
 
significant
 p-­‐values
 denote
 spatial
 dependency
 
among
 the
 residuals.
 *
 denotes
 significance
 at
 
p<.01
 


 
Additionally,
 Moran’s
 I
 tests
 were
 ran
 on
 the
 residuals
 of
 the
 three
 OLS
 regression
 
models.
 Spatial
 dependency
 was
 found
 in
 the
 residuals
 of
 all
 OLS
 models
 with
 particularly
 
evident
 clustering
 found
 in
 household
 transportation
 CO2
 model.
 Table
 2
 compares
 Moran’s
 
I
 tests
 from
 the
 OLS
 and
 spatial
 lag
 models.
 Improvements
 were
 made
 in
 all
 spatial
 lag
 
models.
 Additionally,
 neither
 the
 Moran’s
 on
 the
 residuals
 of
 the
 spatial
 lag
 model
 for
 total
 
CO2
 and
 transportation
 CO2
 are
 significant
 at
 all,
 indicating
 that
 we
 cannot
 reject
 the
 null
 
hypothesis
 that
 the
 data
 is
 randomly
 distributed
 (not
 clustered
 or
 dispersed).
 Figure
 8
 
illustrates
 the
 output
 of
 a
 Local
 Moran’s
 I
 on
 the
 residuals
 of
 the
 total
 CO2
 OLS
 regression.
 
Clustering
 of
 the
 residuals
 is
 evident.
 Figure
 9
 contains
 the
 results
 of
 the
 Local
 Moran’s
 of
 
the
 total
 CO2
 spatial
 lag
 regression.
 Although
 a
 clustering
 of
 values
 is
 still
 present
 in
 the
 
spatial
 lag
 residuals,
 comparison
 between
 the
 two
 maps
 indicates
 a
 reduction
 in
 overall
 
clustering.
 Local
 Moran’s
 I
 maps
 for
 the
 transportation
 and
 residence
 CO2
 OLS
 and
 spatial
 
lag
 models
 follow
 similar
 patterns
 and
 trends.
 

46
 

Figure
 8:
 Local
 Moran
 on
 residuals
 of
 total
 household
 CO2
 OLS
 regression
 model.
 
Significant
 clustering
 is
 represented
 by
 the
 Moran
 clustering
 typology.
 High-­‐high
 and
 
low-­‐low
 designate
 clustering
 of
 positive
 spatial
 autocorrelation,
 while
 high-­‐low
 and
 
low-­‐high
 designate
 spatial
 outliers
 or
 negative
 spatial
 autocorrelation.
 Typology
 
designates
 the
 core
 of
 the
 spatial
 autocorrelation.
 Significant
 replication
 at
 p<0.05.
 


 


 

Figure
 9:
 Local
 Moran
 on
 residuals
 of
 total
 household
 CO2
 spatial
 lag
 regression
 model.
 
Significant
 replication
 at
 p<0.05.
 The
 legend
 is
 as
 described
 in
 Figure
 8.
 

47
 

The
 spatial
 lag
 regression
 models
 for
 total
 CO2
 and
 transportation
 CO2
 made
 
particular
 improvements,
 approximately
 eliminating
 spatial
 dependency
 among
 residuals
 
and
 testing
 for
 non-­‐significant
 Moran’s
 I.
 The
 regression
 model
 for
 residence
 CO2
 saw
 a
 
 
decrease
 in
 Moran’s
 I,
 however
 it
 still
 tests
 significantly
 for
 spatial
 dependency
 (Table
 2),
 
and
 thus
 this
 particular
 model
 does
 not
 adequately
 control
 for
 all
 spatiality,
 although
 it
 is
 
reduced.
 This
 is
 sufficient
 support
 that
 spatial
 regression
 techniques
 should
 be
 utilized
 to
 
reduce
 spatial
 autocorrelation
 among
 residuals
 and
 improve
 the
 model
 (see
 Appendix
 B
 for
 
Local
 Moran’s
 of
 other
 models).
 
Results
 from
 the
 spatial
 lag
 model
 regressions
 are
 displayed
 alongside
 their
 OLS
 
counterparts
 in
 Table
 3
 to
 demonstrate
 improvement
 in
 overall
 fit
 of
 models
 after
 the
 
inclusion
 of
 the
 spatial
 variable.
 Because
 R2
 values
 do
 not
 hold
 when
 spatial
 dependence
 is
 
present,
 the
 log
 likelihood
 can
 be
 used
 to
 assess
 goodness
 of
 fit
 (Anselin,
 1988).
 Among
 
each
 modeled
 dependent
 variables
 of
 CO2,
 the
 log
 likelihood
 increases
 with
 the
 
introduction
 of
 the
 spatial
 elements
 of
 the
 regression
 model
 over
 their
 OLS
 counterparts.
 
For
 example,
 the
 total
 CO2
 OLS
 model
 has
 a
 log
 likelihood
 (df
 =
 204)
 of
 -­‐181.425.
 The
 total
 
CO2
 spatial
 lag
 model
 has
 a
 log
 likelihood
 (df
 =
 203)
 of
 
 -­‐141.636,
 an
 increase
 that
 indicates
 
an
 improvement
 in
 the
 fit
 of
 the
 model.
 Figure
 10
 illustrates,
 through
 a
 regression
 
scatterplot,
 the
 values
 of
 the
 modeled
 total
 CO2
 spatial
 lag
 regression
 against
 the
 observed
 
values
 of
 total
 CO2
 per
 census
 tract.
 The
 regression
 fits
 well
 until
 higher
 levels
 of
 CO2,
 and
 
then
 the
 variability
 between
 the
 modeled
 values
 and
 observed
 values
 increases
 slightly
 
(see
 Appendix
 C
 for
 scatter
 plots
 of
 the
 other
 spatial
 lag
 models).
 Using
 Wald
 Tests
 to
 
assess
 the
 hypotheses
 of
 the
 spatial
 lag
 models
 (again,
 because
 R2
 cannot
 be
 used
 in
 spatial
 

48
 

lag
 regression)
 we
 find
 that
 all
 models,
 total
 CO2
 (χ2203,
 210
 =
 314.9,
 p
 <
 .001),
 transportation
 
CO2
 (χ2203,
 210
 =
 136.1,
 p
 <
 .001),
 and
 residence
 CO2
 (χ2203,
 210
 =
 117.5,
 p
 <
 .001)
 are
 
significant
 (Anselin,
 1988).
 
The
 direction
 of
 coefficients
 is
 consistent
 across
 all
 spatial
 lag
 models
 for
 each
 
explanatory
 variable,
 however
 there
 is
 considerable
 derivation
 in
 the
 explanatory
 power
 of
 
variables.
 Standardized
 beta
 coefficients
 can
 be
 used
 to
 compare
 coefficient
 strength.
 
Median
 income
 has
 the
 most
 influence
 in
 the
 total
 CO2
 and
 transportation
 CO2
 models,
 
although
 household
 size
 also
 has
 a
 strong
 influence,
 and
 in
 some
 cases
 (i.e.
 transportation
 
CO2),
 this
 coefficient
 is
 only
 slightly
 smaller
 than
 the
 coefficient
 for
 median
 income.
 The
 
median
 age
 also
 explains
 a
 significant
 amount
 of
 this
 model
 as
 well.
 In
 the
 residence
 CO2
 
model
 however,
 both
 household
 size
 and
 age,
 first
 and
 second
 most
 influential
 respectively,
 
have
 more
 influence
 than
 income.
 P-­‐values
 for
 these
 three
 variables
 are
 significant
 in
 all
 
spatial
 models
 to
 at
 least
 the
 0.001
 level.
 

Total
 CO2
 Spatial
 Lag
 Regression
 
Actual
 CO2
 Emissions
 

15
 

t
 CO2
 per
 household
 

13
 
11
 
9
 
7
 
5
 
3
 
3
 

5
 

7
 

9
 

11
 

13
 

15
 

Predicted
 CO2
 Emissions
 


 

Figure
 10:
 The
 regression
 plot
 of
 total
 household
 CO2
 emissions
 of
 the
 predicted
 model
 
by
 the
 observed
 emissions
 for
 the
 spatial
 lag
 regression.
 

49
 

Variation
 exists
 in
 the
 direction
 and
 significance
 between
 the
 race
 and
 ethnicity
 
variables
 and
 the
 CO2
 dependent
 variables.
 Black
 households
 exhibit
 a
 positive
 association
 
with
 CO2
 in
 all
 models,
 although
 both
 the
 coefficients
 and
 standardized
 (beta)
 coefficients
 
are
 small
 and
 thus
 have
 weak
 influence.
 By
 contrast,
 Asian
 households
 have
 a
 negative
 
association
 with
 CO2,
 although
 the
 coefficients
 are
 similarly
 small
 and
 have
 weak
 influence.
 
Asian
 households
 do
 not
 test
 significantly
 in
 the
 transportation
 CO2
 model
 and
 is
 only
 
tenuously
 significant
 in
 the
 residence
 CO2
 model
 with
 a
 p-­‐value
 of
 0.059.
 Black
 households
 
attain
 significance
 at
 the
 0.05
 level
 in
 the
 residence
 CO2
 model
 with
 a
 p-­‐value
 of
 0.045.
 
 
The
 lagged
 spatial
 variable
 has
 a
 consistently
 strong
 and
 significant
 influence
 in
 all
 
three
 spatial
 models.
 The
 influence
 of
 the
 weighted
 CO2
 variable
 is
 strongest
 within
 the
 
transportation
 CO2
 model.
 Here,
 the
 weighted
 spatial
 variable
 has
 the
 highest
 standardized
 
coefficient
 (Beta
 =
 0.675)
 between
 all
 other
 variables
 and
 also
 exerts
 considerable
 change
 
on
 the
 coefficients
 of
 the
 variable
 when
 introduced
 into
 the
 model.
 For
 example
 the
 
coefficient
 of
 the
 log
 of
 median
 income
 in
 the
 OLS
 transportation
 CO2
 model
 diminishes
 
from
 1.605
 to
 0.525
 in
 the
 spatial
 lag
 model.
 A
 similar
 change
 is
 noticed
 in
 the
 total
 CO2
 
model
 where
 the
 weighted
 variable
 (Beta
 =
 0.337)
 leads
 to
 a
 decrease
 in
 the
 log
 of
 median
 
income
 from
 2.145
 in
 the
 OLS
 model
 to
 1.418
 in
 the
 spatial
 model.
 The
 weighted
 spatial
 
variable
 exerts
 less
 influence
 in
 the
 residence
 CO2
 model
 (Beta
 =
 0.193)
 compared
 to
 the
 
others,
 although
 there
 is
 observable
 influence
 from
 this
 variable
 on
 Asian
 households
 and
 
median
 income,
 reducing
 the
 coefficients
 of
 both
 in
 the
 spatial
 lag
 model.
 

 

 


 
50
 

TOTAL
 HOUSEHOLD
 CO2
 
OLS
 

 

coefficient
 

p-­‐value
 


 Median
 Age
 

0.050
 

0.000
 

Black
 Households
 

0.005
 

0.001
 

Asian
 Households
 

-­‐0.168
 

0.000
 

1.402
 

0.000
 

Average
 Household
 Size
 
Log
 Median
 Income
 
Constant
 

2.145
 

0.000
 

-­‐18.783
 

0.000
 


 

 
beta
 
 
0.204
 
 
 

coefficient
 

0.695
 
 
 

 
 


 


 

 


 
 

 
 


 


 


 


 

OLS
 

 

Log
 likelihood
 =
 -­‐144.636
 

0.133
 
 
 
-­‐0.166
 
 
 
0.402
 
 
 


 

Spatial
 Variable
 


 Median
 Age
 

coefficient
 

p-­‐value
 

0.014
 

0.204
 

Black
 Households
 

0.002
 

0.196
 

Asian
 Households
 

-­‐0.062
 

0.168
 

Average
 Household
 Size
 

0.878
 

0.000
 

Log
 Median
 Income
 

1.605
 

0.000
 

-­‐11.759
 

0.000
 

Constant
 


 


 


 


 

OLS
 


 Median
 Age
 

0.035
 

0.000
 

Black
 Households
 

0.003
 

0.020
 

Asian
 Households
 

-­‐0.106
 

0.002
 

Average
 Household
 Size
 

0.524
 

0.000
 

Log
 Median
 Income
 

0.540
 

0.000
 

-­‐7.023
 

0.000
 

Constant
 

 


 

-­‐0.108
 

1.244
 

0.000
 ***
 

0.357
 

1.418
 

0.000
 ***
 

0.459
 

-­‐15.328
 

0.000
 ***
 


 

0.153
 
 
 
-­‐0.210
 
 
 
0.302
 
 
 
0.352
 
 
 

 
 

 


 
 

 

0.000
 ***
 
  0.337
 

 

 


 

p-­‐value
 

0.020
 

0.000
 ***
 

0.002
 

0.012
 **
 

-­‐0.023
 

beta
 
0.104
 
0.067
 

0.360
 
 

-­‐0.028
 

0.592
 

0.000
 ***
 

0.215
 

0.525
 

0.000
 ***
 

0.215
 

-­‐6.395
 

0.000
 ***
 
0.000
 ***
 
  0.675
 

0.834
 


 

 

beta
 
 
 
0.294
 
 
 


 

Spatial
 Variable
 

0.017
 **
 


 


 
 
 

Log
 likelihood
 =
 -­‐134.459
 
p-­‐value
 

-­‐0.110
 

coefficient
 

0.318
 
 
 
0.657
 
 
 

 
 

 

coefficient
 

0.114
 

Log
 likelihood
 =
 -­‐77.637
 

0.071
 
 
 
-­‐0.077
 
 
 


 


 

0.219
 

0.001
 ***
 

Spatial
 Lag
 


 

 
beta
 
 
0.074
 
 
 


 


 

0.000
 ***
 

0.005
 


 


 
 

 
 

beta
 

0.053
 


 
 
 


 

Spatial
 Variable
 

p-­‐value
 

0.498
 

Log
 likelihood
 =
 -­‐195.916
 


 


 RESIDENCE
 CO2
 

Spatial
 Lag
 

Log
 likelihood
 =
 -­‐181.425
 


 


 TRANSPORTATION
 CO2
 


 
 
 


 

Spatial
 Lag
 
Log
 likelihood
 =
 -­‐125.132
 
coefficient
 

p-­‐value
 

beta
 

0.036
 

0.000
 ***
 

0.295
 

0.003
 

0.045
 **
 

0.126
 

-­‐0.078
 

0.059
 *
 

-­‐0.155
 

0.534
 

0.000
 ***
 

0.309
 

0.474
 

0.010
 ***
 

0.309
 

-­‐6.819
 

0.000
 ***
 

0.399
 

0.000
 ***
 
  0.193
 

Table
 3:
 OLS
 and
 spatial
 lag
 model
 regression
 results.
 For
 spatial
 lag
 regression
 *
 indicates
 weakly
 significant
 
results
 at
 p
 <
 .10,
 **
 indicates
 significant
 results
 at
 p
 <
 .05,
 and
 ***
 indicates
 significant
 results
 at
 p
 <
 .01.
 
Comparison
 of
 p-­‐values
 between
 the
 OLS
 models
 and
 spatial
 lag
 models
 is
 not
 recommended
 as
 the
 spatial
 lag
 
models
 use
 robust
 standard
 errors
 at
 the
 OLS
 models
 do
 not.
 


 


 

51
 

Chapter 5: Discussion
The
 urban
 scale
 provides
 a
 unique
 analysis
 opportunity.
 Its
 relatively
 small
 scale,
 as
 
compared
 to
 state
 or
 national
 levels,
 renders
 several
 common
 variables
 that
 are
 seen
 to
 be
 
drivers
 of
 CO2
 at
 larger
 scales,
 such
 as
 climate
 or
 fuel
 type,
 negligible.
 At
 the
 same
 time,
 the
 
diversity
 and
 variability
 of
 populations
 across
 the
 urban
 gradient
 allows
 for
 a
 careful
 
analysis
 of
 all
 these
 groups.
 
Household
 CO2
 emissions
 vary
 considerably
 across
 Indianapolis,
 disaplying
 visually
 
apparent
 and
 statistically
 significant
 spatial
 patterning.
 The
 variation
 in
 these
 emissions
 
within
 and
 across
 Indianapolis,
 lends
 support
 to
 an
 analysis
 that
 addresses
 the
 factors
 that
 
drive
 these
 emissions.
 In
 conjunction
 with
 proposed
 socioeconomic
 factors,
 our
 
understanding
 of
 household
 emissions
 will
 be
 improved.
 It
 is
 by
 first
 examining
 the
 factors
 
that
 drive
 the
 variability
 in
 CO2
 emissions
 that
 we
 can
 efficiently
 and
 effectively
 improve
 
strategies
 and
 policy
 directed
 at
 combating
 CO2
 emissions
 within
 cities.
 
Results
 from
 the
 spatial
 lag
 regression
 indicate
 the
 importance
 of
 including
 spatial
 
analysis
 in
 modeling
 at
 this
 scale.
 There
 is
 clear
 support
 for
 the
 spatial
 lag
 regression
 when
 
considering
 the
 improved
 modeled
 fits
 via
 log
 likelihood
 measurements
 from
 the
 OLS
 
models
 to
 the
 spatial
 lag
 models.
 The
 reduction
 in
 spatial
 autocorrelation
 among
 residuals
 
(as
 measured
 by
 Moran’s
 I)
 between
 OLS
 and
 spatial
 lag
 models
 further
 reinforces
 the
 
importance
 of
 the
 spatial
 model.
 Importantly,
 although
 there
 is,
 generally,
 static
 or
 
declining
 explanatory
 power
 among
 coefficients
 with
 the
 integration
 of
 the
 spatial
 
variables,
 the
 explanatory
 power
 of
 almost
 all
 the
 variables
 remain
 significant
 or
 become
 

52
 

significant
 with
 the
 introduction
 of
 spatiality.
 These
 results
 support
 the
 hypotheses
 
presented
 in
 this
 paper
 that
 socioeconomic
 variables
 are
 strong
 predictors
 of
 urban
 CO2,
 
and
 that
 space
 is
 an
 important
 concept
 that
 should
 be
 integrated
 into
 analyses
 at
 this
 scale,
 
potentially
 providing
 useful
 information
 to
 policy
 makers
 on
 local
 climate
 change
 policy
 
and
 helping
 expand
 the
 current
 knowledge
 on
 climate
 change
 drivers.
 

 

5.1 Spatial Variables
It
 was
 important
 to
 include
 and
 consider
 the
 impact
 of
 space
 and
 spatial
 interactions
 
in
 this
 analysis.
 Besides
 issues
 with
 autocorrelation
 among
 error
 terms,
 there
 are
 
theoretical
 considerations
 as
 well.
 Census
 tracts
 are
 devised
 along
 particular
 guidelines,
 
attempting
 to
 create
 fairly
 homogenous
 areas
 taking
 demographic
 and
 economic
 
characteristics
 into
 consideration.
 However,
 tracts
 are
 not
 individual
 in
 the
 same
 way
 a
 
person
 or
 household
 might
 be;
 tracts
 do
 not
 have
 the
 same
 standard
 and
 clear
 
demarcations
 between
 units.
 Instead,
 the
 guidelines
 for
 census
 tracts,
 although
 set
 for
 the
 
particular
 census,
 are
 fluid
 and
 determined
 by
 local
 census
 committees
 (United
 States
 
Census
 Bureau,
 2000)
 and
 thus
 are
 open
 to
 interpretation,
 movement,
 and
 connection.
 
Interactions
 between
 census
 tracts
 are
 inevitable.
 Similarly,
 the
 spatial
 lag
 model
 can
 
account
 for
 externalities
 or
 spatial
 variables
 not
 necessarily
 captured
 in
 the
 regression
 
model.
 That
 becomes
 especially
 important
 for
 this
 analysis
 given
 factors
 of
 urban
 form
 and
 
space,
 factors
 that
 may
 be
 difficult
 to
 calculate
 or
 quantify
 and
 arise
 from
 similarities
 in
 
urban
 form
 that
 can
 exist
 between
 census
 tracts
 which
 occupy
 similar
 space.
 At
 the
 same
 

53
 

time,
 this
 level
 of
 analysis,
 while
 large
 in
 comparison
 to
 a
 single
 household,
 is
 small
 enough
 
to
 assess
 for
 variations
 across
 the
 urban
 and
 institutional
 space.
 
The
 spatial
 analysis
 supports
 these
 theoretical
 considerations.
 The
 spatial
 variables
 
are
 significant
 across
 all
 spatial
 lag
 models.
 The
 transportation
 CO2
 model
 exhibits
 the
 
highest
 correlation
 between
 the
 spatially
 lagged
 CO2
 variable
 and
 the
 dependent
 CO2
 
variable
 across
 all
 models
 with
 a
 regression
 correlation
 coefficient
 of
 approximately
 0.83.
 
Interpreted,
 as
 the
 averaged
 CO2
 of
 all
 of
 a
 census
 tract’s
 neighbors
 increases
 by
 1
 metric
 
tonne
 (t),
 that
 census
 tract’s
 CO2
 can
 be
 said
 to
 increase
 by
 .83
 t.
 This
 is
 perhaps
 expected
 
when
 transportation
 CO2
 associated
 with
 the
 household
 is
 highly
 dependent
 on
 the
 length
 
and
 time
 of
 a
 commute.
 This
 in
 turn
 is
 highly
 dependent
 on
 space,
 or,
 the
 distance
 from
 the
 
household
 to
 the
 job.
 Patterning
 associated
 with
 this
 distance
 is
 clear
 when
 examining
 a
 
map
 of
 transportation
 CO2
 (Figure
 2).
 
Although
 the
 correlation
 coefficients
 for
 the
 other
 spatial
 lag
 models
 are
 not
 as
 
strong,
 they
 are
 also
 statistically
 significant
 and
 have
 substantial
 explanatory
 power
 in
 
their
 respective
 regression
 models.
 There
 is
 spatial
 clustering
 evident
 in
 the
 residence
 CO2
 
model,
 with
 particularly
 high
 CO2
 per
 household
 census
 tracts
 clustering
 around
 the
 edges
 
and
 in
 the
 center
 of
 the
 study
 area
 (Figure
 2).
 These
 clusters
 could
 be
 caused
 by
 several
 
factors,
 but
 there
 are
 several
 likely
 reasons
 that
 we
 can
 consider.
 For
 example,
 this
 
clustering
 could
 be
 due
 to
 higher
 levels
 of
 larger
 households
 than
 one
 would
 associate
 with
 
the
 suburbs
 and
 with
 older
 housing
 that
 one
 associates
 with
 city
 centers
 and
 initial
 early
 
developments,
 both
 of
 which
 are
 going
 to
 increase
 CO2
 per
 household
 in
 those
 tracts.
 
Analysis
 of
 the
 Hestia
 Project
 database
 confirms
 both
 of
 these
 suspicions.
 

54
 

Total
 household
 CO2
 (Figure
 3)
 is
 an
 amalgamation
 of
 transportation
 CO2
 and
 
residence
 CO2
 and
 thus
 contains
 reference
 to
 patterns
 visible
 in
 both.
 Clear
 spatiality
 in
 
these
 models
 is
 confirmation
 that
 spatial
 analysis
 is
 integral
 to
 this
 type
 of
 research.
 
Examination
 of
 households’
 CO2
 emissions
 without
 these
 considerations
 may
 result
 in
 
inadequate
 models
 and
 overestimate
 the
 coefficients
 of
 the
 other
 variables.
 However,
 
limitations
 of
 the
 data
 used
 in
 this
 study,
 that
 is
 the
 relatively
 larger
 contribution
 of
 
transportation
 emissions
 over
 residence
 emissions
 to
 household
 emissions,
 may
 contribute
 
to
 an
 overemphasis
 of
 transportation
 CO2
 in
 the
 analysis
 of
 household
 CO2,.
 Consequently,
 
the
 drivers
 of
 total
 CO2
 may
 be
 largely
 driven
 by
 transportation
 CO2.
 The
 direction
 and
 
relative
 power
 of
 coefficients
 (betas)
 within
 each
 spatial
 lag
 model
 may
 lend
 some
 support
 
to
 reliability
 to
 the
 overall
 influence
 of
 individual
 socioeconomic
 factors
 when
 considering
 
that
 (excluding
 the
 spatial
 variable)
 income
 is
 consistently
 the
 biggest
 predictor
 of
 
emissions,
 followed
 by
 average
 household
 size,
 then
 median
 income,
 and
 finally
 the
 race
 
and
 ethnicity
 variables.
 This
 holds
 for
 all
 spatial
 models,
 so
 while
 transportation
 CO2
 is
 
quantitatively
 more
 significant
 in
 the
 amount
 of
 metric
 tonnes
 per
 household
 it
 contributes
 
to
 CO2,
 the
 relationships
 between
 variables
 seem
 consistent.
 

 

5.2 Income
Unsurprisingly,
 income
 is
 a
 significant
 predictor
 of
 CO2
 across
 all
 models.
 This
 is
 
backed
 by
 substantial
 literature,
 including
 research
 that
 has
 examined
 the
 relationship
 
between
 CO2
 and
 income
 controlling
 for
 spatiality
 among
 variables,
 albeit
 at
 larger
 scales
 
than
 in
 the
 present
 analysis
 (Burnett
 &
 Bergstrom,
 2010;
 Glaeser,
 2012;
 Golley
 &
 Meng,
 
55
 

2012;
 Min
 et
 al.,
 2010).
 The
 mechanisms
 surrounding
 these
 trends,
 which
 exists
 among
 all
 
models,
 is
 clear-­‐cut:
 higher
 levels
 of
 income
 per
 household
 have
 associated
 higher
 levels
 of
 
spending.
 This
 increased
 spending
 power
 manifests
 itself
 through
 increased
 CO2,
 
potentially
 through
 increased
 housing
 size,
 number
 of
 vehicles,
 and
 vehicle
 travel
 distance.
 
Additionally,
 through
 a
 mechanism
 strongly
 associated
 with
 race,
 but
 also
 cheap
 land,
 
upper-­‐class
 and
 white
 flight
 from
 inner
 cities
 has
 moved
 higher
 income
 households
 farther
 
out
 to
 the
 suburbs
 increasing
 commute
 times
 (Charles,
 2003;
 Garrett
 &
 Taylor,
 1999).
 
Figure
 4
 illustrates
 the
 spatial
 clustering
 associated
 with
 median
 income
 in
 
Indianapolis.
 Higher
 income
 households
 are
 intensely
 located
 at
 the
 edges
 of
 the
 boundary
 
of
 the
 city.
 But
 even
 controlling
 for
 spatiality
 and
 other
 explanatory
 variables,
 income
 is
 a
 
significant
 predictor
 of
 household
 CO2.
 Taking
 into
 account
 the
 log
 transformation
 of
 the
 
median
 income
 variables
 and
 the
 resultant
 regression
 coefficient
 for
 log
 of
 median
 income,
 
increasing
 income
 by
 100%,
 say,
 for
 example,
 from
 the
 50th
 percentile
 of
 census
 tracts’
 
household
 median
 income
 to
 approximately
 the
 95th
 percentile,
 would
 increase
 total
 
household
 CO2
 by
 approximately
 0.98t.
 A
 50%
 increase
 in
 income
 results
 in
 an
 
approximate
 0.57t
 increase
 in
 total
 CO2.
 The
 log
 relationship
 between
 CO2
 and
 income
 has
 
been
 well
 established
 in
 the
 literature
 and
 implicates
 a
 decreasing
 marginal
 relationship
 of
 
the
 two
 variables
 (Glaeser
 &
 Kahn,
 2010;
 Limpert,
 Stahel,
 &
 Abbt,
 2001).
 In
 other
 words,
 
each
 successive
 additional
 dollar
 in
 household
 income
 has
 a
 decreasing
 impact
 of
 CO2,
 and
 
thus
 at
 lower
 levels
 of
 income,
 increases
 in
 actual
 income
 (not
 percent
 increases)
 have
 
greater
 impacts
 on
 CO2
 than
 at
 larger
 household
 incomes.
 
 

56
 

The
 explanatory
 power
 of
 median
 household
 income
 is
 reduced
 with
 the
 addition
 of
 
the
 spatial
 variable
 across
 all
 models.
 However,
 median
 income
 in
 the
 residence
 CO2
 model
 
is
 influenced
 substantially
 less
 than
 its
 counterparts
 with
 reduction
 in
 explanatory
 power
 
of
 approximately
 15%
 between
 models.
 The
 total
 CO2
 and
 the
 transportation
 CO2
 models
 
see
 considerable
 reduction
 however,
 approximately
 34%
 and
 67%
 respectively.
 Despite
 
this
 impact,
 median
 income
 remains
 one
 of
 the
 most
 important
 explanatory
 variables
 
across
 the
 models,
 and
 the
 theoretical
 and
 research
 background
 that
 supports
 this
 
assertion
 stands
 up
 to
 the
 addition
 of
 spatial
 variables,
 further
 reinforcing
 its
 significance
 
as
 a
 factor
 in
 household
 CO2
 emissions.
 

 

5.3 Race and ethnicity
Due
 to
 a
 variety
 of
 institution,
 cultural,
 and
 historical
 factors,
 the
 concentration
 of
 
minority
 households
 across
 the
 urban
 space
 is
 not
 homogenous.
 This
 is
 well
 illustrated
 by
 
Figure
 5
 and
 Figure
 6,
 the
 percentage
 of
 black
 households
 and
 Asian
 households
 
respectively.
 The
 two
 race
 variables
 vary
 considerably
 in
 their
 explanatory
 power
 across
 
the
 models.
 Both
 black
 and
 Asian
 households
 test
 significantly
 in
 the
 total
 CO2
 model,
 
although
 Asian
 households
 fail
 to
 attain
 significance
 in
 the
 transportation
 CO2
 model
 and
 
are
 only
 significant
 at
 the
 0.1
 level
 in
 the
 residence
 CO2
 model,
 narrowly
 missing
 
significance
 with
 a
 p-­‐vale
 of
 0.059.
 However,
 the
 most
 interesting
 conclusion
 from
 this
 
analysis,
 and
 contrary
 to
 the
 few
 analyses
 that
 have
 taken
 household
 race
 into
 
consideration
 (Estiri,
 2013;
 Min
 et
 al.,
 2010)
 is
 the
 differing,
 and
 consistent,
 direction
 of
 
influence
 that
 the
 respective
 household
 race
 variables
 have.
 
57
 

Previous
 research,
 although
 limited,
 has
 found
 a
 negative
 association
 with
 
minorities
 and
 CO2.
 (Estiri,
 2013)
 first
 examined
 race
 and
 ethnicity
 as
 a
 singular
 minority
 
variable
 for
 households
 across
 the
 U.S.
 using
 data
 from
 the
 Residential
 Energy
 
Consumption
 Survey
 created
 by
 the
 U.S.
 Energy
 Information
 Agency.
 The
 minority
 variable
 
was
 further
 broken
 down
 into
 individual
 race
 and
 ethnicities,
 but
 a
 consistent
 negative
 
relationship
 was
 established
 between
 all.
 (Min
 et
 al.,
 2010)
 employ
 a
 somewhat
 similar
 
model
 as
 used
 in
 this
 present
 analysis
 where
 several
 variables
 representing
 a
 portion
 of
 
minorities
 is
 used.
 Negative
 relationships
 between
 race
 and
 ethnicity
 and
 CO2
 were
 
uncovered
 there
 as
 well.
 However,
 neither
 paper
 attempts
 to
 draw
 conclusions
 or
 provide
 
explanations
 for
 the
 direction
 or
 strength
 of
 influence
 of
 minority
 households
 on
 CO2
 
emissions.
 The
 differing
 results
 found
 in
 this
 study
 may
 provide
 a
 clue
 at
 the
 heterogeneity
 
that
 exists
 between
 cities.
 The
 previously
 mentioned
 studies
 employed
 national
 databases
 
while
 this
 analysis
 examined
 one
 particular
 city.
 The
 spatial
 pattern
 of
 household
 race
 and
 
ethnicity
 depends
 on
 a
 range
 of
 forces
 that
 are
 place
 dependent,
 and,
 given
 the
 uniqueness
 
of
 these
 forces
 for
 each
 city,
 it
 is
 perhaps
 unsurprising
 to
 find
 the
 results
 of
 this
 small-­‐scale
 
study
 do
 not
 follow
 that
 of
 national
 averages.
 
In
 the
 present
 analysis,
 this
 previously
 seen
 negative
 relationship
 between
 race
 and
 
ethnicity
 and
 household
 CO2
 holds
 for
 Asian
 households,
 which
 have
 consistently
 negative
 
coefficients
 across
 the
 models.
 Black
 households
 however,
 have
 consistently
 positive
 
coefficients
 across
 all
 three
 models,
 holding
 all
 other
 variables
 constant,
 including
 
spatiality.
 At
 the
 institutional
 level,
 these
 results
 imply
 that
 black
 households
 are
 
consistently
 and
 structurally
 living
 in
 places
 that
 have
 associated
 higher
 CO2
 emissions,
 
either
 through
 residence
 or
 transportation
 associated
 mechanisms.
 Although
 the
 
58
 

significance
 for
 residence
 CO2
 and
 black
 households
 is
 tenuous,
 this
 relationship
 could
 be
 
due,
 for
 example,
 to
 black
 households
 living
 in
 older
 neighborhoods
 where
 heating
 and
 
cooling
 demands
 may
 be
 increased
 due
 to
 inefficiencies
 in
 residence
 structure.
 It
 is
 useful
 
to
 point
 out
 that
 both
 black
 households
 and
 Asian
 households
 are
 overall
 weak
 predictors
 
of
 CO2,
 however
 these
 results,
 even
 controlling
 for
 the
 strong
 influence
 of
 spatiality
 in
 these
 
models,
 concur
 with
 previous
 research
 that
 race
 is
 at
 least
 a
 slight
 factor
 in
 household
 CO2
 
emissions.
 

 

5.4 Other variables
Median
 age
 and
 average
 household
 size
 are
 utilized
 in
 this
 model
 as
 controlling
 
factors.
 But,
 these
 variables
 are
 also
 strongly
 linked
 to
 important
 socioeconomic
 variables.
 
Indeed,
 issues
 of
 severe
 multicollinearity
 required
 that
 certain
 variables,
 such
 as
 number
 of
 
children,
 had
 to
 be
 excluded
 from
 the
 model.
 The
 number
 of
 children
 per
 household
 is
 
strongly
 multicollinear
 with
 household
 size.
 As
 families
 grow
 and
 more
 space
 is
 required,
 
they
 may
 potentially
 seek
 larger
 and
 cheaper
 housing
 away
 from
 the
 center
 of
 the
 city,
 a
 
dual
 effect
 of
 raising
 CO2
 by
 both
 transportation
 and
 residence.
 In
 the
 transportation
 CO2
 
and
 residence
 CO2
 spatial
 lag
 models,
 average
 household
 size
 and
 income
 have
 relatively
 
the
 same
 explanatory
 power.
 In
 the
 total
 CO2
 model,
 income
 becomes
 a
 stronger
 predictor
 
than
 average
 household
 size,
 perhaps
 suggesting
 that
 there
 is
 some
 overlap
 in
 predictive
 
power
 of
 average
 household
 size
 between
 the
 transportation
 and
 residence
 models,
 
whereas
 the
 predictive
 power
 of
 income
 across
 those
 two
 models
 may
 be
 picking
 up
 on
 
different
 patterns.
 
59
 

Similarly,
 age
 of
 individuals
 living
 in
 a
 household
 is
 a
 significant
 influencing
 factor
 
across
 all
 spatial
 models
 in
 the
 present
 analysis.
 The
 influence
 of
 age
 on
 household
 CO2
 
emissions
 is
 not
 consistently
 agreed
 upon
 in
 the
 literature
 (Kriström,
 2008).
 A
 positive
 
significant
 relationship
 between
 age
 and
 household
 CO2
 emissions
 was
 found
 in
 national
 
models,
 although
 the
 influence
 of
 this
 variable
 was
 consistently
 weak
 (Estiri,
 2013;
 Glaeser,
 
2012;
 Golley
 &
 Meng,
 2012;
 Min
 et
 al.,
 2010).
 (Lutzenhiser
 &
 Hackett,
 1993)
 found
 that
 
among
 older
 households
 there
 were
 higher
 per
 capita
 household
 square
 footage,
 ostensibly
 
associated
 with
 children
 leaving
 while
 aging
 parents
 stay
 in
 the
 same
 house.
 Higher
 square
 
footages
 are
 associated
 with
 higher
 emissions.
 This
 is
 backed
 up
 by
 (Estiri,
 2013)
 analysis
 
that
 found
 age
 to
 be
 positively
 associated
 with
 per
 capita
 emissions
 and
 emissions
 per
 
square
 foot.
 These
 two
 studies
 support
 the
 conclusion
 that
 age
 is
 positively
 associated
 with
 
household
 CO2
 emissions.
 
On
 the
 other
 end,
 it
 can
 be
 reasonably
 agreed
 that
 at
 some
 point
 age
 negatively
 
influences
 transportation
 CO2
 emissions
 since
 the
 elderly
 drive
 much
 less
 (Okada,
 2012).
 
This
 type
 of
 age
 influence,
 while
 a
 plausible
 mechanism,
 is
 more
 than
 likely
 not
 captured
 
the
 particular
 analysis
 employed
 in
 this
 paper.
 The
 lowest
 median
 household
 age
 in
 Marion
 
County
 census
 tracts
 is
 around
 22,
 while
 the
 oldest
 is
 52.
 In
 actuality
 the
 model
 presented
 
in
 this
 study
 has
 more
 potential
 in
 capturing
 the
 change
 as
 young
 adults
 begin
 buying
 
houses.
 If
 this
 analysis
 included
 wealth,
 or
 total
 assets
 per
 household,
 the
 results
 might
 be
 
slightly
 different,
 as
 housing
 as
 a
 part
 of
 wealth
 would
 account
 for
 some
 of
 this
 activity.
 
 

 

60
 

5.5 Policy implications
Research
 into
 the
 creation
 of
 household
 CO2
 has
 increasingly
 looked
 past
 the
 
technical
 aspects
 of
 households
 and
 started
 looking
 more
 closely
 at
 the
 behavioral
 and
 
socioeconomic
 structural
 factors
 that
 contribute
 to
 CO2
 emissions.
 This
 analysis
 attempted
 
to
 analyze
 the
 contribution
 of
 socioeconomic
 factors
 to
 household
 CO2
 emissions
 within
 a
 
particular
 urban
 setting,
 Indianapolis,
 IN,
 while
 specifically
 considering
 the
 influence
 of
 
space
 and
 the
 interactions
 between
 neighborhoods.
 The
 results
 of
 this
 study
 may
 not
 be
 
generalizable
 to
 other
 urban
 areas,
 and
 indeed,
 one
 would
 expect
 that
 depending
 on
 the
 
urban,
 cultural,
 and
 historical
 structure
 of
 the
 city
 that
 the
 analysis
 would
 indeed
 change
 
between
 cities.
 This
 restriction
 was
 known
 at
 the
 start
 of
 this
 research.
 If
 it
 is
 difficult
 to
 
find
 consistency
 and
 agreement
 among
 studies
 on
 household
 variables
 and
 CO2
 emissions
 
at
 broader
 scales
 (Kriström,
 2008),
 it
 is
 fair
 to
 assume
 that
 variation
 will
 be
 visible
 at
 
smaller
 scales
 as
 well.
 Still,
 the
 present
 study
 does
 represent
 a
 further
 step
 in
 
understanding
 the
 drivers
 of
 CO2
 emissions,
 even
 as
 the
 generalizability
 of
 these
 exact
 
results
 are
 questionable.
 Small-­‐scale
 analyses
 of
 household
 CO2
 emissions
 have
 not
 been
 
done
 so
 this
 research
 offers
 insight
 and
 first
 steps
 to
 gaining
 a
 clearer
 picture
 of
 the
 factors
 
that
 drive
 emissions.
 
 
As
 such,
 there
 are
 interesting
 and
 important
 conclusions
 to
 be
 derived
 from
 these
 
results.
 First,
 the
 continuing
 importance
 of
 particular
 socioeconomic
 factors,
 especially
 
income,
 as
 supported
 by
 previous
 research,
 but
 confirmed
 at
 the
 neighborhood
 scale
 of
 a
 
city
 in
 this
 analysis.
 Second,
 the
 inclusion
 of
 spatiality
 in
 modeling
 household
 CO2
 

61
 

emissions
 is
 unique
 at
 this
 scale.
 This
 study
 demonstrates
 the
 need
 for
 the
 integration
 of
 
spatiality
 into
 the
 understanding
 of
 small-­‐scale
 CO2
 emissions.
 
This
 analysis
 focused
 on
 household
 emissions
 and
 not
 per
 capita
 emissions
 because
 
policy
 undertaken
 at
 the
 municipal
 level
 may
 be
 more
 focused
 on
 household
 level
 policies,
 
instead
 of
 targeting
 the
 individual.
 The
 distinction
 between
 per
 capita
 and
 household
 level
 
analyses
 is
 important
 because
 the
 conclusions
 reached
 can
 be
 dramatically
 different.
 
Previous
 research
 indicates
 that
 household
 size
 has
 a
 negative
 relationship
 with
 per
 capita
 
CO2
 emissions
 (Kriström,
 2008).
 Analyses
 of
 residential
 energy
 and
 CO2
 emissions
 has
 
shifted
 to
 households
 because
 these
 components
 are
 shared
 among
 all
 household
 members
 
(de
 Sherbinin
 et
 al.,
 2007).
 This
 makes
 sense
 instinctually;
 more
 people
 living
 in
 one
 
residence
 reduces
 the
 CO2
 emissions
 per
 person.
 Household
 level
 policies
 may
 include
 
efficiencies
 to
 residence
 or
 subsidies
 for
 electric
 cars
 for
 example.
 
 
This
 entire
 analysis
 is
 not
 to
 say
 that
 we
 should
 advocate
 reducing
 household
 
incomes,
 for
 example,
 as
 a
 deterrence
 to
 increased
 CO2
 emissions.
 This
 analysis
 indicates
 
how
 policy
 could
 potentially
 be
 targeted,
 or
 may
 be
 best
 targeted,
 to
 reduce
 emissions.
 That
 
is,
 if
 income
 is
 a
 significant
 explanatory
 variable
 of
 total
 household
 CO2
 emissions
 then
 
perhaps
 policy
 makers
 should
 be
 directing
 their
 climate
 change
 mitigation
 policies
 at
 this
 
particular
 group.
 Tax
 cuts
 for
 household
 energy
 efficiency
 upgrades
 is
 one
 potential
 
example.
 The
 recent
 sustainable
 and
 environmental
 urban
 planning
 community
 has
 
advocated
 ideas
 such
 as
 walkable
 cities.
 By
 integrating
 residential
 and
 commercial
 areas
 
more
 fluidly,
 household
 transportation
 needs
 are
 reduce.
 By
 advocating
 for
 denser
 living,
 

62
 

residence
 sizes
 are
 also
 substantially
 reduced.
 Overall
 CO2
 emissions
 associated
 with
 the
 
household
 may
 be
 reduced
 (Bulkeley
 et
 al.,
 2010).
 
Race
 and
 ethnicity
 has
 a
 much
 weaker
 influence
 on
 household
 CO2
 emissions
 than
 
income,
 but
 it
 is
 useful
 to
 see
 how
 policy
 makers
 may
 utilize
 this
 type
 of
 information.
 The
 
clustering
 of
 black
 households
 in
 a
 certain
 area
 of
 Indianapolis
 may
 be
 a
 prime
 target
 for
 
neighborhood
 level
 policies,
 especially
 considering
 the
 positive
 association
 between
 black
 
households
 and
 CO2
 emissions.
 Policy
 directed
 here
 may
 first
 want
 to
 gather
 additional
 
information
 to
 obtain
 a
 clearer
 understanding
 of
 the
 factors
 behind
 this
 relationship.
 
Perhaps
 public
 transportation
 needs
 to
 be
 improved
 in
 the
 area
 to
 reduce
 associated
 
household
 transportation
 CO2.
 Perhaps
 this
 area
 of
 the
 city
 is
 associated
 with
 older
 homes,
 
and
 thus
 household
 energy
 efficiency
 policies,
 and
 associated
 education
 outreach
 of
 said
 
policies,
 may
 be
 the
 best
 direction
 for
 policy
 makers.
 The
 type
 of
 information
 to
 come
 out
 
of
 an
 analysis
 such
 as
 presented
 in
 this
 paper
 should
 be
 paired
 with
 other
 types
 of
 
knowledge
 as
 well.
 
These
 policy
 recommendations
 are
 not
 actual
 prescriptions
 to
 action;
 instead,
 they
 
are
 examples
 of
 how
 this
 type
 of
 information
 may
 be
 valuable
 in
 the
 policy
 making
 process.
 
In
 general,
 there
 has
 been
 a
 focus
 on
 the
 technical
 and
 physical
 aspects
 of
 CO2
 emissions
 
and
 this
 has
 been
 reflected
 in
 policy
 as
 well.
 The
 results
 of
 this
 analysis
 add
 credence
 to
 the
 
recent
 literature
 that
 demonstrates
 the
 influence
 of
 socioeconomics
 factors
 on
 household
 
CO2,
 as
 well
 as
 demonstrating
 the
 way
 in
 which
 these
 socioeconomic
 variables
 can
 be
 
modeled
 at
 small
 spatial
 scales,
 a
 scale
 that
 would
 be
 useful
 to
 policymakers.
 


 

63
 

Chapter 6: Conclusion
6.1 Conclusion
Climate
 change
 is
 perhaps
 the
 single
 most
 important
 issue
 facing
 the
 world
 
community,
 and
 the
 Earth
 at
 large,
 this
 century.
 The
 causes
 and
 impacts
 are
 global,
 crossing
 
international
 boundaries
 through
 trade
 and
 the
 diffuse
 nature
 of
 CO2
 emissions.
 Solutions
 
at
 the
 international
 level
 have
 predominately
 failed
 to
 bring
 about
 changes
 in
 emissions
 
required
 to
 see
 significant
 reduction
 in
 the
 expected
 impacts.
 However,
 these
 failures
 have
 
spurred
 action
 at
 lower
 levels
 of
 government.
 In
 the
 U.S.
 this
 has
 meant
 states
 and
 local
 
jurisdictions
 are
 crafting
 policy
 that
 addresses
 climate
 change.
 
This
 analysis
 was
 not
 performed
 as
 a
 thought
 experiment
 over
 potential
 local
 
climate
 policy.
 Local
 jurisdictions
 are
 taking
 actions
 now,
 and
 thus
 there
 is
 a
 need
 for
 
accurate
 information
 on
 the
 nature
 of
 CO2
 emissions.
 While
 the
 city
 examined
 in
 this
 study,
 
Indianapolis,
 does
 not
 currently
 have
 comprehensive
 climate
 change
 policy,
 this
 is
 the
 type
 
of
 information
 that
 may
 be
 utilized
 by
 local
 jurisdictions.
 Thus,
 this
 study
 was
 a
 first
 
attempt
 to
 create
 this
 type
 of
 analysis,
 to
 demonstrate
 how
 it
 could
 be
 done,
 the
 types
 of
 
questions
 that
 could
 be
 answered,
 and
 the
 potential
 uses
 of
 this
 data.
 
Because
 of
 the
 specific
 and
 non-­‐randomized
 nature
 of
 this
 study,
 the
 results
 of
 the
 
analysis
 are
 not
 necessarily
 generalizable
 to
 other
 cities
 or
 jurisdictions.
 However,
 it
 is
 in
 
the
 author’s
 opinion
 that
 although
 there
 may
 be
 changes
 among
 the
 direction
 and
 
significance
 of
 variables
 between
 cities,
 as
 physical
 and
 social
 structures
 will
 vary,
 patterns
 
of
 spatiality
 will
 still
 exist.
 Spatiality
 is
 a
 concept
 that
 recognizes
 not
 just
 the
 differences
 in
 
64
 

socioeconomic
 groups
 across
 the
 city
 space,
 but
 also
 in
 the
 biophysical
 structure
 as
 well,
 
and
 thus
 this
 study
 demonstrates
 the
 need
 to
 include
 that
 influence
 in
 analysis
 of
 
household
 CO2.
 These
 findings
 recognize
 that
 particular
 places
 in
 the
 city
 may
 be
 more
 
prone
 to
 higher
 or
 lower
 CO2
 emissions
 either
 due
 to
 biophysical
 or
 socioeconomic
 factors,
 
and
 should
 be
 considered
 in
 policy
 decisions.
 
Furthermore,
 although
 it
 cannot
 be
 said
 for
 certain
 that
 the
 patterns
 for
 race
 and
 
ethnicity
 that
 were
 observed
 for
 this
 study
 will
 hold
 for
 other
 cities,
 the
 concept
 of
 housing
 
discrimination
 is
 well
 documented
 and
 has
 been
 observed
 across
 the
 country.
 It
 is
 thus
 not
 
a
 stretch
 to
 say
 that
 race
 and
 ethnicity
 will
 be
 a
 significant
 factor
 in
 other
 cities
 as
 well,
 and
 
should
 be
 taken
 into
 consideration
 in
 other
 models.
 The
 other
 variables
 analyzed
 in
 this
 
study
 have
 much
 more
 previous
 research
 to
 back
 up
 their
 inclusion
 in
 future
 work.
 
Positive
 and
 significant
 relationships
 between
 total
 household
 CO2
 emissions
 were
 
observed
 between
 two
 of
 the
 variables
 of
 main
 interest
 to
 this
 study
 as
 a
 main
 components
 
of
 socioeconomic
 status,
 income
 and
 black
 households.
 Although
 a
 controlling
 variable,
 
average
 household
 size
 is
 also
 strongly
 associated
 with
 total
 CO2.
 Income
 has
 a
 long
 
established
 positive
 relationship
 and
 is
 backed
 by
 this
 analysis.
 Black
 households
 revealed
 
a
 
 positive
 relationship
 with
 CO2
 that
 is
 contrary
 to
 previous
 results.
 Coinciding
 with
 
previous
 research,
 Asian
 households
 have
 a
 negative
 relationship
 with
 household
 CO2.
 This
 
emphasizes
 the
 individual
 nature
 of
 urban
 space
 and
 individual
 cities,
 as
 well
 as
 the
 
individual
 nature
 in
 relationships
 between
 different
 races
 and
 emissions.
 The
 historical
 
policies
 and
 structure
 of
 the
 city
 has
 meant
 certain
 populations
 have
 clustered
 in
 either
 
areas
 that
 are
 associated
 with
 either
 higher
 or
 lower
 CO2
 Overall
 this
 study
 confirmed
 the
 

65
 

initial
 research
 questions,
 identifying
 the
 importance
 of
 spatiality,
 and
 the
 importance
 of
 
socioeconomic
 indicators
 such
 as
 income
 and
 race
 and
 ethnicity
 as
 factors
 of
 household
 
CO2
 emissions.
 

 

6.2 Interdisciplinary Statement

 An
 issue
 of
 climate
 change’s
 complexity
 and
 breadth
 requires
 research
 not
 just
 on
 
the
 biophysical
 causes
 and
 impacts,
 but
 from
 the
 socioeconomic,
 cultural,
 and
 political
 
causes
 and
 impacts
 as
 well.
 The
 integration
 of
 all
 these
 disciplines
 is
 difficult,
 but
 necessary
 
for
 accurate
 climate
 research
 and
 policy.
 Disciplinary
 intersection
 can
 be
 seen
 in
 the
 IPCC,
 a
 
group
 of
 scientists
 from
 around
 the
 world
 who
 use
 complex
 biophysical
 models
 of
 the
 
Earth
 to
 predict
 and
 understand
 future
 impacts,
 while
 integrating
 multiple
 socioeconomic
 
and
 political
 scenarios
 into
 these
 models.
 There
 is
 tacit
 recognition
 of
 the
 need
 for
 all
 types
 
of
 science
 and
 policy
 within
 climate
 change
 research.
 
It
 is
 in
 this
 spirit
 that
 this
 analysis
 has
 attempted
 to
 merge
 CO2
 and
 socioeconomic
 
data.
 The
 importance
 of
 geography
 in
 this
 research
 is
 not
 just
 in
 ensuring
 an
 accurate
 and
 
robust
 regression
 analysis,
 but
 as
 a
 tacit
 acknowledgement
 that
 spatial
 influence
 exists
 
within
 the
 urban
 form
 and
 is
 an
 important
 variable
 to
 consider
 in
 policy.
 The
 analysis
 also
 
borrows
 from
 the
 economic
 and
 sociology
 literature,
 in
 the
 examination
 of
 CO2
 and
 income
 
and
 the
 relationship
 between
 race,
 ethnicity,
 housing,
 and
 transportation.
 The
 data
 that
 
was
 utilized
 for
 this
 analysis
 was
 created
 by
 downscaling,
 a
 complex
 process
 that
 utilized
 
GIS
 and
 energy
 modeling.
 Finally,
 part
 of
 the
 intent
 of
 this
 research
 to
 create
 a
 method
 to
 

66
 

extract
 relevant
 information
 from
 CO2
 emission
 data
 that
 could
 potentially
 inform
 climate
 
change
 mitigation
 policy
 making
 on
 the
 local
 level.
 The
 integration
 of
 all
 these
 disciplines
 
was
 paramount
 to
 the
 success
 of
 this
 analysis.
 

 

6.4 Recommendations
Several
 opportunities
 for
 improvement
 on
 this
 study
 for
 future
 consideration
 come
 
immediately
 to
 mind.
 Specifically,
 as
 discussed
 in
 section
 3.4,
 there
 are
 limitations
 to
 the
 
data,
 limitations
 that,
 if
 managed
 correctly,
 could
 improve
 the
 robustness
 and
 accuracy
 of
 
analysis.
 Additionally,
 time-­‐series
 analyses
 could
 help
 identify
 trends
 in
 changing
 
socioeconomic
 and
 physical
 structures
 of
 cities,
 considering
 especially
 the
 movement
 of
 
populations
 between
 and
 away
 from
 neighborhoods.
 Both
 these
 recommendations
 require
 
improvements
 in
 data
 gathering
 or
 modeling
 efforts
 as
 well
 in
 complex
 analysis,
 and
 would,
 
in
 general,
 require
 larger
 amounts
 of
 data.
 
It
 is
 also
 recommended
 that
 further
 studies
 consider
 per
 capita
 emissions,
 as
 well
 as
 
household
 level
 emissions
 in
 the
 analyses.
 There
 is
 a
 well-­‐established
 relationship
 wherein
 
the
 marginal
 increase
 in
 household
 CO2
 emissions
 decreases
 with
 each
 additional
 member
 
of
 the
 household.
 Overall
 emissions
 are
 higher
 in
 this
 case,
 but
 per
 capita
 emissions
 are
 
actually
 lower.
 This
 research
 controlled
 for
 household
 size,
 and
 so
 the
 relationships
 among
 
all
 other
 variables
 still
 stand,
 but
 it
 would
 be
 of
 interest
 to
 see
 how
 per
 capita
 CO2
 
emissions
 vary
 over
 the
 urban
 space.
 While
 this
 paper
 focused
 solely
 on
 households
 as
 the
 
unite
 of
 analysis
 in
 consideration
 of
 household-­‐level
 focused
 policy
 decisions,
 relevant
 

67
 

information
 could
 be
 derived
 from
 per
 capita
 analyses
 as
 well,
 and
 both
 should
 be
 carried
 
out
 side-­‐by-­‐side
 in
 future
 work.
 


 


 

68
 

Bibliography
Aldy,
 J.
 E.
 (2005).
 An
 Environmental
 Kuznets
 Curve
 Analysis
 of
 U.S.
 State-­‐Level
 Carbon
 
Dioxide
 Emissions.
 The
 Journal
 of
 Environment
 &
 Development,
 14(1),
 48–72.
 
doi:10.1177/1070496504273514
 
Anselin,
 L.
 (1988).
 Spatial
 Econometrics:
 Methods
 and
 Models.
 Springer.
 
Antipova,
 A.,
 Wang,
 F.,
 &
 Wilmot,
 C.
 (2011).
 Urban
 land
 uses,
 socio-­‐demographic
 attributes
 
and
 commuting:
 A
 multilevel
 modeling
 approach.
 Applied
 Geography,
 31(3),
 1010–
1018.
 doi:10.1016/j.apgeog.2011.02.001
 
Betsill,
 M.
 (2001).
 Mitigating
 climate
 change
 in
 US
 cities:
 opportunities
 and
 obstacles.
 Local
 
environment,
 6(4),
 393–406.
 
Betsill,
 M.,
 &
 Bulkeley,
 H.
 (2007).
 Looking
 Back
 and
 Thinking
 Ahead:
 A
 Decade
 of
 Cities
 and
 
Climate
 Change
 Research.
 Local
 Environment,
 12(5),
 447–456.
 
doi:10.1080/13549830701659683
 
Boswell,
 M.
 R.,
 Greve,
 A.
 I.,
 &
 Seale,
 T.
 L.
 (2010).
 An
 Assessment
 of
 the
 Link
 Between
 
Greenhouse
 Gas
 Emissions
 Inventories
 and
 Climate
 Action
 Plans.
 Journal
 of
 the
 
American
 Planning
 Association,
 76(4),
 451–462.
 
doi:10.1080/01944363.2010.503313
 
Brownstone,
 D.,
 &
 Golob,
 T.
 F.
 (2009).
 The
 impact
 of
 residential
 density
 on
 vehicle
 usage
 
and
 energy
 consumption.
 Journal
 of
 Urban
 Economics,
 65(1),
 91–98.
 
doi:10.1016/j.jue.2008.09.002
 
Bulkeley,
 H.,
 Broto,
 V.
 C.,
 Hodson,
 M.,
 &
 Marvin,
 S.
 (2010).
 Cities
 and
 Low
 Carbon
 Transitions.
 
Taylor
 &
 Francis.
 
Burnett,
 J.
 W.,
 &
 Bergstrom,
 J.
 C.
 (2010).
 U.S.
 State-­‐Level
 Carbon
 Dioxide
 Emissions:
 A
 Spatial-­‐
Temporal
 Econometric
 Approach
 of
 the
 Environmental
 Kuznets
 Curve
 (Faculty
 Series
 
No.
 96031).
 University
 of
 Georgia,
 Department
 of
 Agricultural
 and
 Applied
 
Economics.
 Retrieved
 from
 
http://econpapers.repec.org/paper/agsugeofs/96031.htm
 
Canadell,
 J.
 G.,
 Quéré,
 C.
 L.,
 Raupach,
 M.
 R.,
 Field,
 C.
 B.,
 Buitenhuis,
 E.
 T.,
 Ciais,
 P.,
 …
 Marland,
 
G.
 (2007).
 Contributions
 to
 accelerating
 atmospheric
 CO2
 growth
 from
 economic
 
activity,
 carbon
 intensity,
 and
 efficiency
 of
 natural
 sinks.
 Proceedings
 of
 the
 National
 
Academy
 of
 Sciences,
 104(47),
 18866–18870.
 doi:10.1073/pnas.0702737104
 
Charles,
 C.
 Z.
 (2003).
 The
 dynamics
 of
 racial
 residential
 segregation.
 Annual
 Review
 of
 
Sociology,
 167–207.
 

69
 

Churkina,
 G.
 (2008).
 Modeling
 the
 carbon
 cycle
 of
 urban
 systems.
 Ecological
 Modelling,
 
216(2),
 107–113.
 doi:10.1016/j.ecolmodel.2008.03.006
 
De
 Sherbinin,
 A.,
 Carr,
 D.,
 Cassels,
 S.,
 &
 Jiang,
 L.
 (2007).
 Population
 and
 Environment.
 
Annual
 Review
 of
 Environment
 and
 Resources,
 32,
 345–373.
 
doi:10.1146/annurev.energy.32.041306.100243
 
Dodman,
 D.
 (2009).
 Blaming
 cities
 for
 climate
 change?
 An
 analysis
 of
 urban
 greenhouse
 gas
 
emissions
 inventories.
 Environment
 and
 Urbanization,
 21(1),
 185–201.
 
Doyle,
 D.
 G.,
 &
 Taylor,
 B.
 D.
 (2000).
 Variation
 in
 Metropolitan
 Travel
 Behavior
 by
 Sex
 and
 
Ethnicity.
 Retrieved
 from
 http://trid.trb.org/view.aspx?id=899770
 
Eggleston,
 S.,
 Buendia,
 L.,
 Miwa,
 K.,
 Ngara,
 T.,
 &
 Tanabe,
 K.
 (2006).
 IPCC
 guidelines
 for
 
national
 greenhouse
 gas
 inventories.
 Institute
 for
 Global
 Environmental
 Strategies,
 
Hayama,
 Japan.
 Retrieved
 from
 http://library.wur.nl/WebQuery/clc/1885455
 
Engel,
 K.
 H.,
 &
 Orbach,
 B.
 Y.
 (2008).
 Micro-­‐Motives
 and
 State
 and
 Local
 Climate
 Change
 
Initiatives.
 Harvard
 Law
 &
 Policy
 Review,
 2,
 119.
 
Estiri,
 H.
 (2013).
 21
 Percent:
 The
 Role
 of
 Socioeconomics
 and
 Housing
 Characteristics
 on
 CO2
 
Emissions
 from
 the
 U.S.
 Residential
 Sector
 (SSRN
 Scholarly
 Paper
 No.
 ID
 2196984).
 
Rochester,
 NY:
 Social
 Science
 Research
 Network.
 Retrieved
 from
 
http://papers.ssrn.com/abstract=2196984
 
Garrett,
 M.,
 &
 Taylor,
 B.
 (1999).
 Reconsidering
 social
 equity
 in
 public
 transit.
 Berkeley
 
Planning
 Journal,
 13,
 6–27.
 
Glaeser,
 E.
 L.
 (2012).
 The
 challenge
 of
 urban
 policy.
 Journal
 of
 Policy
 Analysis
 &
 
Management,
 31(1),
 111–122.
 doi:10.1002/pam.20631
 
Glaeser,
 E.
 L.,
 &
 Kahn,
 M.
 E.
 (2010).
 The
 greenness
 of
 cities:
 Carbon
 dioxide
 emissions
 and
 
urban
 development.
 Journal
 of
 Urban
 Economics,
 67(3),
 404–418.
 
doi:10.1016/j.jue.2009.11.006
 
Golley,
 J.,
 &
 Meng,
 X.
 (2012).
 Income
 inequality
 and
 carbon
 dioxide
 emissions:
 The
 case
 of
 
Chinese
 urban
 households.
 Energy
 Economics,
 34(6),
 1864–1872.
 
doi:10.1016/j.eneco.2012.07.025
 
Gurney,
 K.
 R.,
 Razlivanov,
 I.,
 Song,
 Y.,
 Zhou,
 Y.,
 Benes,
 B.,
 &
 Abdul-­‐Massih,
 M.
 (2012).
 
Quantification
 of
 fossil
 fuel
 CO2
 emissions
 at
 the
 building/street
 scale
 for
 a
 large
 US
 
city.
 Environmental
 Science
 &
 Technology.
 Retrieved
 from
 
http://pubs.acs.org/doi/abs/10.1021/es3011282
 
Heinonen,
 J.,
 &
 Junnila,
 S.
 (2011).
 A
 Carbon
 Consumption
 Comparison
 of
 Rural
 and
 Urban
 
Lifestyles.
 Sustainability,
 3(8),
 1234–1249.
 doi:10.3390/su3081234
 

70
 

Hillmer-­‐Pegram,
 K.
 C.,
 Howe,
 P.
 D.,
 Greenberg,
 H.,
 &
 Yarnal,
 B.
 (2012).
 A
 geographic
 
approach
 to
 facilitating
 local
 climate
 governance:
 From
 emissions
 inventories
 to
 
mitigation
 planning.
 Applied
 Geography,
 34,
 76–85.
 
doi:10.1016/j.apgeog.2011.11.001
 
Hoornweg,
 D.,
 Sugar,
 L.,
 &
 Gómez,
 C.
 L.
 T.
 (2011).
 Cities
 and
 greenhouse
 gas
 emissions:
 
moving
 forward.
 Environment
 and
 Urbanization,
 23(1),
 207–227.
 
doi:10.1177/0956247810392270
 
ICLEI.
 (2012,
 October).
 U.S.
 Community
 Protocol
 for
 Accounting
 and
 Reporting
 Greenhouse
 
Gas
 Emissions.
 ICLEI
 -­‐
 Local
 Governments
 for
 Sustainability
 USA.
 
International
 Energy
 Agency.
 (2008).
 World
 Energy
 Outlook
 2008
 (p.
 569).
 Paris:
 IEA.
 
Retrieved
 from
 http://www.worldenergyoutlook.org/media/weowebsite/2008-­‐
1994/WEO2008.pdf
 
IPCC.
 (2007).
 Climate
 Change
 2007:
 Synthesis
 Report.
 Contribution
 of
 Working
 Groups
 I,
 II
 
and
 III
 to
 the
 Fourth
 Assessment
 Report
 of
 the
 Intergovernmental
 Panel
 on
 Climate
 
Change.
 IPCC.
 
Jeanty,
 P.
 W.
 (2010).
 SPMLREG:
 Stata
 module
 to
 estimate
 the
 spatial
 lag,
 the
 spatial
 error,
 the
 
spatial
 durbin,
 and
 the
 general
 spatial
 models
 by
 maximum
 likelihood.
 Boston
 College
 
Department
 of
 Economics.
 
Kahn,
 M.
 E.
 (2000).
 The
 Environmental
 Impact
 of
 Suburbanization.
 Journal
 of
 Policy
 Analysis
 
&
 Management,
 19(4),
 569–586.
 
Kaza,
 N.
 (2010).
 Understanding
 the
 spectrum
 of
 residential
 energy
 consumption:
 A
 quantile
 
regression
 approach.
 Energy
 Policy,
 38(11),
 6574–6585.
 
doi:10.1016/j.enpol.2010.06.028
 
Kennedy,
 C.,
 Steinberger,
 J.,
 Gasson,
 B.,
 Hansen,
 Y.,
 Hillman,
 T.,
 Havránek,
 M.,
 …
 Mendez,
 G.
 V.
 
(2009).
 Greenhouse
 Gas
 Emissions
 from
 Global
 Cities.
 Environmental
 Science
 &
 
Technology,
 43(19),
 7297–7302.
 doi:10.1021/es900213p
 
Kennedy,
 C.,
 Steinberger,
 J.,
 Gasson,
 B.,
 Hansen,
 Y.,
 Hillman,
 T.,
 Havránek,
 M.,
 …
 Mendez,
 G.
 V.
 
(2010).
 Methodology
 for
 inventorying
 greenhouse
 gas
 emissions
 from
 global
 cities.
 
Energy
 Policy,
 38(9),
 4828–4837.
 doi:10.1016/j.enpol.2009.08.050
 
Kennedy,
 S.,
 &
 Sgouridis,
 S.
 (2011).
 Rigorous
 classification
 and
 carbon
 accounting
 
principles
 for
 low
 and
 Zero
 Carbon
 Cities.
 Energy
 Policy,
 39(9),
 5259–5268.
 
doi:10.1016/j.enpol.2011.05.038
 
Kerkhof,
 A.
 C.,
 Benders,
 R.
 M.
 J.,
 &
 Moll,
 H.
 C.
 (2009).
 Determinants
 of
 variation
 in
 household
 
CO2
 emissions
 between
 and
 within
 countries.
 Energy
 Policy,
 37(4),
 1509–1517.
 
doi:10.1016/j.enpol.2008.12.013
 

71
 

Kousky,
 C.,
 &
 Schneider,
 S.
 H.
 (2003).
 Global
 climate
 policy:
 will
 cities
 lead
 the
 way?
 Climate
 
Policy,
 3(4),
 359–372.
 
Krause,
 Rachel
 M.
 (2011).
 Policy
 Innovation,
 Intergovernmental
 Relations,
 and
 the
 
Adoption
 of
 Climate
 Protection
 Initiatives
 by
 U.S.
 Cities.
 Journal
 of
 Urban
 Affairs,
 
33(1),
 45–60.
 doi:10.1111/j.1467-­‐9906.2010.00510.x
 
Krause,
 Rachel
 Marie.
 (2011).
 An
 assessment
 of
 the
 greenhouse
 gas
 reducing
 activities
 
being
 implemented
 in
 US
 cities.
 Local
 Environment,
 16(2),
 193–211.
 
Kriström,
 B.
 (2008).
 Residential
 Energy
 Demand.
 OECD
 Journal:
 General
 Papers,
 2008(2),
 
95–115.
 
Larsen,
 H.
 N.,
 &
 Hertwich,
 E.
 G.
 (2009).
 The
 case
 for
 consumption-­‐based
 accounting
 of
 
greenhouse
 gas
 emissions
 to
 promote
 local
 climate
 action.
 Environmental
 Science
 &
 
Policy,
 12(7),
 791–798.
 doi:10.1016/j.envsci.2009.07.010
 
Le
 Quéré,
 C.,
 Raupach,
 M.
 R.,
 Canadell,
 J.
 G.,
 Al,
 G.
 M.
 et,
 Al,
 C.
 L.
 Q.
 et,
 Al,
 C.
 L.
 Q.
 et,
 …
 Bopp,
 L.
 
(2009).
 Trends
 in
 the
 sources
 and
 sinks
 of
 carbon
 dioxide.
 Nature
 Geoscience,
 2(12),
 
831–836.
 doi:10.1038/ngeo689
 
Limpert,
 E.,
 Stahel,
 W.
 A.,
 &
 Abbt,
 M.
 (2001).
 Log-­‐normal
 Distributions
 across
 the
 Sciences:
 
Keys
 and
 Clues.
 BioScience,
 51(5),
 341–352.
 
Lutzenhiser,
 L.
 (1997).
 Social
 Structure,
 Culture,
 and
 Technology:
 Modeling
 the
 Driving
 
Forces
 of
 Household
 Energy
 Consumption.
 In
 Environmentally
 Significant
 
Consumption:
 Research
 Directions.
 National
 Academies
 Press.
 
Lutzenhiser,
 L.,
 &
 Hackett,
 B.
 (1993).
 Social
 Stratification
 and
 Environmental
 Degradation:
 
Understanding
 Household
 CO2
 Production.
 Social
 Problems,
 40(1),
 50–73.
 
doi:10.2307/3097026
 
Metz,
 B.
 (2007).
 Climate
 Change
 2007
 -­‐
 Mitigation
 of
 Climate
 Change:
 Working
 Group
 III
 
Contribution
 to
 the
 Fourth
 Assessment
 Report
 of
 the
 IPCC.
 Cambridge
 University
 
Press.
 
Min,
 J.,
 Hausfather,
 Z.,
 &
 Lin,
 Q.
 F.
 (2010).
 A
 High-­‐Resolution
 Statistical
 Model
 of
 Residential
 
Energy
 End
 Use
 Characteristics
 for
 the
 United
 States.
 Journal
 of
 Industrial
 Ecology,
 
14(5),
 791–807.
 doi:10.1111/j.1530-­‐9290.2010.00279.x
 
Nakicenovic,
 N.,
 Alcamo,
 J.,
 Davis,
 G.,
 de
 Vries,
 B.,
 Fenhann,
 J.,
 Gaffin,
 S.,
 …
 Dadi,
 Z.
 (2000).
 
Special
 Report
 on
 Emissions
 Scenarios:
 A
 Special
 Report
 of
 Working
 Group
 III
 of
 the
 
Intergovernmental
 Panel
 on
 Climate
 Change
 (No.
 PNNL-­‐SA-­‐39650).
 Pacific
 
Northwest
 National
 Laboratory,
 Richland,
 WA
 (US),
 Environmental
 Molecular
 
Sciences
 Laboratory
 (US).
 Retrieved
 from
 
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=15009867
 

72
 

Norman,
 J.,
 MacLean,
 H.
 L.,
 &
 Kennedy,
 C.
 A.
 (2006).
 Comparing
 High
 and
 Low
 Residential
 
Density:
 Life-­‐Cycle
 Analysis
 of
 Energy
 Use
 and
 Greenhouse
 Gas
 Emissions.
 Journal
 of
 
Urban
 Planning
 &
 Development,
 132(1),
 10–21.
 doi:10.1061/(ASCE)0733-­‐
9488(2006)132:1(10)
 
Okada,
 A.
 (2012).
 Is
 an
 increased
 elderly
 population
 related
 to
 decreased
 CO2
 emissions
 
from
 road
 transportation?
 Energy
 Policy,
 45,
 286–292.
 
doi:10.1016/j.enpol.2012.02.033
 
Pataki,
 D.
 E.,
 Alig,
 R.
 J.,
 Fung,
 A.
 S.,
 Golubiewski,
 N.
 E.,
 Kennedy,
 C.
 A.,
 McPherson,
 E.
 G.,
 …
 
Romero
 Lankao,
 P.
 (2006).
 Urban
 ecosystems
 and
 the
 North
 American
 carbon
 cycle.
 
Global
 Change
 Biology,
 12(11),
 2092–2102.
 
Peters,
 G.,
 &
 Hertwich,
 E.
 (2008).
 Post-­‐Kyoto
 greenhouse
 gas
 inventories:
 production
 
versus
 consumption.
 Climatic
 Change,
 86(1),
 51–66.
 doi:10.1007/s10584-­‐007-­‐9280-­‐
1
 
Pucher,
 J.,
 &
 Renne,
 J.
 L.
 (2003).
 Socioeconomics
 of
 urban
 travel:evidence
 from
 the
 2001
 
NHTS.
 Transportation
 Quarterly,
 57(3).
 Retrieved
 from
 
http://trid.trb.org/view.aspx?id=662423
 
Ramanathan,
 R.
 (2006).
 A
 multi-­‐factor
 efficiency
 perspective
 to
 the
 relationships
 among
 
world
 GDP,
 energy
 consumption
 and
 carbon
 dioxide
 emissions.
 Technological
 
Forecasting
 and
 Social
 Change,
 73(5),
 483–494.
 doi:10.1016/j.techfore.2005.06.012
 
Ramaswami,
 A.,
 Hillman,
 T.,
 Janson,
 B.,
 Reiner,
 M.,
 &
 Thomas,
 G.
 (2008).
 A
 Demand-­‐
Centered,
 Hybrid
 Life-­‐Cycle
 Methodology
 for
 City-­‐Scale
 Greenhouse
 Gas
 Inventories.
 
Environmental
 Science
 &
 Technology,
 42(17),
 6455–6461.
 doi:10.1021/es702992q
 
Roscigno,
 V.
 J.,
 Karafin,
 D.
 L.,
 &
 Tester,
 G.
 (2009).
 The
 Complexities
 and
 Processes
 of
 Racial
 
Housing
 Discrimination.
 Social
 Problems,
 56(1),
 49–69.
 doi:10.1525/sp.2009.56.1.49
 
Satterthwaite,
 D.
 (2008).
 Cities’
 contribution
 to
 global
 warming:
 notes
 on
 the
 allocation
 of
 
greenhouse
 gas
 emissions.
 Environment
 and
 Urbanization,
 20(2),
 539–549.
 
doi:10.1177/0956247808096127
 
Sharp,
 E.
 B.,
 Daley,
 D.
 M.,
 &
 Lynch,
 M.
 S.
 (2011).
 Understanding
 local
 adoption
 and
 
implementation
 of
 climate
 change
 mitigation
 policy.
 Urban
 Affairs
 Review,
 47(3),
 
433–457.
 
Shen,
 Q.
 (2000).
 Spatial
 and
 Social
 Dimensions
 of
 Commuting.
 Journal
 of
 the
 American
 
Planning
 Association,
 66(1),
 68–82.
 
Sippel,
 M.,
 &
 Jenssen,
 T.
 (2009).
 What
 About
 Local
 Climate
 Governance?
 A
 Review
 of
 
Promise
 and
 Problems.
 SSRN
 eLibrary.
 Retrieved
 from
 
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1514334
 

73
 

Swan,
 L.
 G.,
 &
 Ugursal,
 V.
 I.
 (2009).
 Modeling
 of
 end-­‐use
 energy
 consumption
 in
 the
 
residential
 sector:
 A
 review
 of
 modeling
 techniques.
 Renewable
 and
 Sustainable
 
Energy
 Reviews,
 13(8),
 1819–1835.
 doi:10.1016/j.rser.2008.09.033
 
Tang,
 Z.,
 Brody,
 S.
 D.,
 Quinn,
 C.,
 Chang,
 L.,
 &
 Wei,
 T.
 (2010).
 Moving
 from
 agenda
 to
 action:
 
evaluating
 local
 climate
 change
 action
 plans.
 Journal
 of
 Environmental
 Planning
 and
 
Management,
 53(1),
 41–62.
 doi:10.1080/09640560903399772
 
Tucker,
 M.
 (1995).
 Carbon
 dioxide
 emissions
 and
 global
 GDP.
 Ecological
 Economics,
 15(3),
 
215–223.
 doi:10.1016/0921-­‐8009(95)00045-­‐3
 
U.S.
 Department
 of
 Commerce
 Economics
 and
 Statistics
 Administration.
 (2010).
 U.S.
 Carbon
 
Dioxide
 Emissions
 and
 Intensities
 Over
 Time:
 A
 Detailed
 Accounting
 of
 Industries,
 
Government
 and
 Households
 |
 Economics
 and
 Statistics
 Administration.
 Retrieved
 
from
 http://www.esa.doc.gov/Reports/u.s.-­‐carbon-­‐dioxide
 
United
 Nations
 Department
 of
 Economic
 and
 Social
 Affairs,
 Population
 Divison.
 (2012).
 
World
 Urbanization
 Prospects,
 the
 2011
 Revisions.
 Retrieved
 from
 
http://esa.un.org/unpd/wup/pdf/WUP2011_Highlights.pdf
 
United
 States
 Census
 Bureau.
 (2000,
 April
 19).
 Census
 Tracts
 and
 Block
 Numbering
 Areas.
 
Retrieved
 May
 12,
 2013,
 from
 http://www.census.gov/geo/www/cen_tract.html
 
US
 EPA,
 C.
 C.
 D.
 (n.d.).
 U.S.
 Greenhouse
 Gas
 Inventory
 Report
 (Reports
 &
 Assessments,).
 
Retrieved
 from
 
http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html
 
VandeWeghe,
 J.
 R.,
 &
 Kennedy,
 C.
 (2007).
 A
 Spatial
 Analysis
 of
 Residential
 Greenhouse
 Gas
 
Emissions
 in
 the
 Toronto
 Census
 Metropolitan
 Area.
 Journal
 of
 Industrial
 Ecology,
 
11(2),
 133–144.
 doi:10.1162/jie.2007.1220
 
Ward,
 M.
 D.,
 &
 Gleditsch,
 K.
 S.
 (2008).
 Spatial
 Regression
 Models.
 SAGE.
 
Wentz,
 E.
 A.,
 Gober,
 P.,
 Balling,
 R.
 C.,
 &
 Day,
 T.
 A.
 (2002).
 Spatial
 Patterns
 and
 Determinants
 
of
 Winter
 Atmospheric
 Carbon
 Dioxide
 Concentrations
 in
 an
 Urban
 Environment.
 
Annals
 of
 the
 Association
 of
 American
 Geographers,
 92(1),
 15–28.
 
Wier,
 M.,
 Lenzen,
 M.,
 Munksgaard,
 J.,
 &
 Smed,
 S.
 (2001).
 Effects
 of
 Household
 Consumption
 
Patterns
 on
 CO2
 Requirements.
 Economic
 Systems
 Research,
 13(3),
 259–274.
 
doi:10.1080/09537320120070149
 
Zhou,
 Y.,
 &
 Gurney,
 K.
 (2010).
 A
 new
 methodology
 for
 quantifying
 on-­‐site
 residential
 and
 
commercial
 fossil
 fuel
 CO2
 emissions
 at
 the
 building
 spatial
 scale
 and
 hourly
 time
 
scale.
 Carbon
 Management,
 1(1),
 45–56.
 doi:10.4155/cmt.10.7
 

 


 

74
 


 

Appendix A
Moran’s
 I
 and
 Local
 Moran’s
 I
 maps
 were
 analyzed
 in
 the
 exploratory
 spatial
 analysis
 stage
 
of
 this
 study.
 The
 results
 are
 presented
 below,
 with
 each
 CO2
 variable
 exhibiting
 significant
 
clustering.
 

 

 

 
Moran's
 I
 on
 Dependent
 Variables
 
Moran's
 
 I
 

 Total
 CO2
 
0.522
 *
 
Transportation
 CO2
 
0.736
 *
 
Residence
 CO2
 
0.199
 *
 
Table
 4:
 Moran's
 I
 test
 for
 spatial
 dependency
 
among
 CO2
 variables.
 P-­‐values
 are
 based
 on
 
replications
 where
 significant
 p-­‐values
 denote
 
spatial
 dependency
 among
 variables.
 *
 denotes
 
significance
 at
 p<.01
 


 

Figure
 11:
 Local
 Moran’s
 I
 on
 total
 household
 CO2
 emissions.
 Significant
 clustering
 is
 
represented
 by
 the
 Moran
 clustering
 typology.
 High-­‐high
 and
 low-­‐low
 designate
 
clustering
 of
 positive
 spatial
 autocorrelation,
 while
 high-­‐low
 and
 low-­‐high
 designate
 
spatial
 outliers
 or
 negative
 spatial
 autocorrelation.
 Typology
 designates
 the
 core
 of
 the
 
spatial
 autocorrelation.
 Significant
 replication
 at
 p<0.05.
 

75
 

Figure
 12:
 Local
 Moran’s
 I
 on
 transportation
 CO2
 emissions.
 The
 legend
 is
 as
 described
 
in
 Figure
 11.
 

Figure
 13:
 Local
 Moran’s
 I
 on
 residence
 CO2
 emissions.
 The
 legend
 is
 as
 described
 in
 
Figure
 11.
 


 

 


 


 


 
76
 

Appendix B
Local
 Moran’s
 I
 maps
 on
 the
 residuals
 of
 the
 residence
 CO2
 regression
 models
 and
 
transportation
 CO2
 regression
 models
 are
 presented
 below.
 Both
 the
 spatial
 lag
 models
 
exhibit
 decreased
 visual
 and
 overall
 clustering,
 and
 per
 their
 calculated
 Moran’s
 I
 statistic
 
available
 in
 Table
 2,
 their
 spatial
 dependency
 among
 their
 residuals
 decreases
 over
 their
 
respective
 OLS
 models.
 

 

 

 

Figure
 14:
 Local
 Moran’s
 I
 on
 residuals
 of
 residence
 CO2
 OLS
 regression
 model.
 
Significant
 replication
 at
 p<0.05.
 The
 legend
 is
 as
 described
 in
 Figure
 11.
 


 


 

77
 

Figure
 15:
 Local
 Moran’s
 I
 on
 residuals
 of
 residence
 CO2
 spatial
 lag
 regression
 model.
 
Significant
 replication
 at
 p<0.05.
 The
 legend
 is
 as
 described
 in
 Figure
 11.
 


 


 

Figure
 16:
 Local
 Moran’s
 I
 on
 residuals
 of
 transportation
 CO2
 OLS
 regression
 model.
 
Significant
 replication
 at
 p<0.05.
 The
 legend
 is
 as
 described
 in
 Figure
 11.
 


 


 
78
 

Figure
 17:
 Local
 Moran’s
 I
 on
 residuals
 of
 transportation
 CO2
 spatial
 lag
 regression
 
model.
 Significant
 replication
 at
 p<0.05.
 The
 legend
 is
 as
 described
 in
 Figure
 11.
 


 

 

 


 


 

79
 

Appendix C

Actual
 CO2
 Emissions
 

The
 regression
 scatterplots
 of
 the
 spatial
 lag
 of
 transportation
 CO2
 and
 residence
 CO2
 are
 
presented
 below.
 

 

 
12
 
11
 
10
 
9
 
8
 
7
 
6
 
5
 
4
 
3
 

Transportation
 CO2
 Spatial
 Lag
 Regression
 
t
 CO2
 per
 household
 

4
 

5
 

6
 
7
 
8
 
9
 
Predicted
 CO2
 Emissions
 

10
 

11
 


 

Figure
 18:
 The
 regression
 plot
 of
 transportation
 CO2
 emissions
 of
 the
 predicted
 model
 
by
 the
 observed
 emissions
 for
 the
 spatial
 lag
 regression.
 


 

Residence
 CO2
 Spatial
 Lag
 Regression
 
Actual
 CO2
 Emissions
 

6
 

-­‐1.0
 

t
 CO2
 per
 household
 

5
 
4
 
3
 
2
 
1
 
0
 
-­‐0.5
 

-­‐1
 

0.0
 

0.5
 

1.0
 

1.5
 

2.0
 

2.5
 

3.0
 

Predicted
 CO2
 Emissions
 


 

Figure
 19:
 The
 regression
 plot
 of
 residence
 CO2
 emissions
 of
 the
 predicted
 model
 by
 
the
 observed
 emissions
 for
 the
 spatial
 lag
 regression.
 

80