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Abstract

Distribution of Urban Household Carbon Dioxide Emissions along a Socioeconomic
Gradient of Indianapolis, IN

Kara Karboski

As cities tackle climate change mitigation, filling the gap left by failures in international
agreements, a demand for more information and data on the dynamics of urban carbon
dioxide (CO2) emissions has been created. Up to this point, past research of the drivers of
anthropogenic CO; emissions have failed to examine the dynamics of urban CO2 emissions
at the neighborhood scale for an entire city. At this scale the effects of historical, cultural,
and structural forces that shape housing distribution of the city become visible. This type of
information could improve strategies and targets for local climate change mitigation policy.
Accordingly, the objective of this study was to examine the spatial distribution and
socioeconomic drivers of urban household CO; emissions.

This research used household CO; emission data, residence and transportation emissions,
from the Hestia Project and the Center for Neighborhood Technology to perform a spatial
analysis of the socioeconomic drivers of CO2 emissions at the census tract scale for the city
of Indianapolis, IN. A spatial lag regression was employed to control for influences from
interactions and externalities associated with neighboring census tracts. The results show
the model explained a large portion of household CO2 emissions, with spatial influences
exhibiting a strong influence. Income was found to be a strong predictor of household CO>
emissions (3 =-0.46, p <.001). Race and ethnicity of households for both black households
(B=0.11, p <.001) and Asian households ( =-0.11, p <.001), while significant, were found
to be weak predictors of emissions. This study concludes that there is significant variability
in household CO2 emissions across the urban space due in large part to the variability and
distribution of socioeconomic factors. This type of information should be integrated into
local climate change policy to improve strategies to mitigation.
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Chapter 1: Introduction

1.1 Introduction

The urban space has become the new battleground for climate change mitigation.
Undeterred by the lack of agreement and response at the international and national level,
progressive municipalities across the United States are drafting climate change policy,
focusing their attention on the reduction of carbon dioxide (COz) emissions, the largest
anthropogenic contributor to climate change. Because cities are committing the time and
financial resources to these types of policies, an accurate understanding of the patterns and
drivers of CO2 emissions within cities is essential. Urban form is not only restricted to the
physical and technical aspects of the city; important structural, cultural, and historical
factors at work influence where CO> is generated within the city. Consequently, recognizing
and analyzing these spatial patterns is important for potential integration into city climate
policy. Information of this type can be used to inform and improve policy targeted at
reducing emissions as well as contribute to the knowledge of the urban drivers of climate

change.

Previous research analyzing the relationship between CO2 emissions and cities has
consistently found socioeconomic factors as drivers of COz, such as increasing CO>
emissions with increasing income. Most of these studies have focused on city-level
emissions, carrying out their analysis by comparing CO2 emissions between cities. While
this reveals important information, the dynamics of sub-city-level CO; emissions deserve

attention as well. This gap can be contributed to data constraints; neighborhood-level



analysis requires fine-scale data that is difficult and costly to obtain. Those few studies that
have examined COz emissions at these smaller scales have had limited success because
their level of analysis was too large to perceive important spatial patterns that exist at the
sub-city level. This thesis represents another step in examining fine-scale urban CO>
emissions and seeks to bridge the gap in current research by utilizing small scale CO; data

at the census tract level to appropriately model neighborhood spatial dynamics.

Using data for the city of Indianapolis, IN, the research presented in this thesis
analyzes the distribution of household CO2 emissions across the urban space as they relate
to socioeconomic factors that influence where people live by utilizing spatial analyses. By
specifically accounting for the influence of neighbors, that is the influence of connections
across space, this analysis attempts to develop an accurate and predictable model of urban
CO2 emissions. Socioeconomic factors, most importantly income and race for this analysis,
can drive particular populations into certain parts of the city. As the city is not a
homogenous space, it is predicted that the underlying structure of the city, both physically
and socially, can be taken into account to accurately identify relationships between CO>
emissions and demographic factors. It is hypothesized that CO2 emissions will be positively
associated with household income, that there will be a significant association with
household race, and variables of space will explain significant part of the creation of

household CO; emissions.



1.2 Background

Modern global climate change refers to the change in global temperatures caused by
increasing concentrations of greenhouse gases, including carbon dioxide, methane, nitrous
oxide, and fluorinated gases, in Earth’s atmosphere as well as by other anthropogenic
forcings such as changes in land use. These greenhouse gases play a vital role in regulating
a habitable temperature on Earth by trapping radiation energy sent by the Sun between
Earth’s surface and this layer of greenhouse gases in the atmosphere (IPCC, 2007).
Quantitatively, the most important anthropogenic greenhouse gas is carbon dioxide (CO2).
Over the last few centuries we have primarily derived our energy for work through fossil
fuel sources such as coal, oil, and natural gas. These energy dense substances are composed
of carbon and when combusted release CO2. Research has shown that since humans began
combusting these materials in increasingly larger amounts beginning at the industrial
revolution, the CO2 concentrations in the atmosphere have increased as well, intensifying

the power of the greenhouse effect and increasing global temperatures (IPCC, 2007).

An increase in global temperatures would have, and is currently having, a profound
affect on the natural and built environments humans have adapted to. Effects include
shifting habitats, species extinction, increased drought, changing precipitation patterns,
and rising sea levels (IPCC, 2007). All these biophysical changes will have extensive

impacts on human systems.

There is little incentive for individual actors to take action on expensive climate
change mitigation when their own efforts, by themselves, will do little to actually mitigate

the impacts of climate change. The burden of the costs of mitigation rests fully on those



who take mitigation actions, while the benefits accrue to everyone, even those who do not
act, thanks to the diffuse nature of CO2 emissions. Thus the benefits become diluted for
those who took mitigation actions, and accordingly, costs of mitigation action exceed the
benefits of these actions. This is what economics terms the tragedy of the commons. Unless
there is agreement among all parties involved, agreement that isn’t presently occurring,
then this economic conundrum will continue. This is why climate change mitigation has
long been thought to be the realm of international discussion and negotiation, as these are
large enough actors to cover the entire global population. However, cities have been taking

action regardless of these perceived barriers.

Local climate policy has been of interest to researchers since its inception. While
these policies may be successful at meeting goals at the city level, they are ultimately
hindered in realizing substantial reduction in global CO2 emissions. Several important
factors keep local reductions from providing substantial reductions in global CO;
emissions. First, local climate change mitigation policy is still in its infancy and the
coverage attributed to these policies is limited, and thus emission reductions are on an
extremely limited scale. Although several major cities have enacted CO2 policies, it is
unclear how many people are falling under these policy umbrellas. Second, these policies
may not call for large cuts in emissions, or there may not be hard incentives to reduce
emissions in the first place, limiting their efficacy. Finally, as mentioned before, there seems
to be, at first glance, no to little economic incentive for cities to partake in climate change
mitigation policies. This is not to fault cities. Indeed their decision to take up any type of

climate change policy is surprising, but important. Perhaps the initiative being taken can



spur the global scale adoption of local policies or perhaps help push an international

agreement

For cities to draft effective climate change mitigation policy, they require data on the
greenhouse gases emitted from their jurisdiction. Additional information on the nature of
these emissions, the local factors that drive these emissions, could help aid policy
development. Furthermore, modeling the variables that influence urban CO; emissions will
contribute to our general knowledge of the drivers of climate change, and we may be better
able to project future emissions scenarios. Thus, it is important to understand the specific

dynamics of urban CO; emissions.

1.3 Structure of Thesis

There are six chapters presented in this thesis:

Chapter 1: Introduction

Chapter 2: Literature Review

Outlines the relevant and previous research relevant to this thesis beginning with
local climate change policy, and moving on to household determinants of energy
production and the factors that drive CO; emissions. Special focus is given to

socioeconomic factors of CO».

Chapter 3: Methods



Establishes the main research goals and the primary methodology and statistical

analysis employed within this study.

Chapter 4: Results

The results from the analysis are presented.

Chapter 5: Discussion

Discusses the findings from the results and the implications of these results on

climate change research and climate change mitigation policy.

Chapter 6: Conclusion

Final conclusions are presented. An interdisciplinary statement discusses the
importance of multiple disciplines to the analysis conducted in this paper. This

paper ends with further recommendations for study.



Chapter 2: Literature Review

2.1 Introduction

Climate change is a global issue encompassing complex natural and human systems
and has thus necessitated a large body of research outside of the physical sciences. Unifying
under the single issue of climate change has led to research across and between a breadth
of disciplines ranging from economics and political science, to conservation biology and
international development. Interest has grown over the last few years regarding the
relationship, one of considerable give and take, between cities and climate change.
Extensive literature is devoted to examining these particular dynamics, where cities act as
substantive contributors to climate in addition to being areas of particular concern for
climate change impacts. Of immediate interest for this study is the literature focused on
cities’ contributions to climate change and the drivers of climate change, with an emphasis
on the socioeconomic drivers of household CO2 emissions, as well as spatial analysis of CO-

emissions between and within cities.

The spotlight on cities has magnified in part because of continuing urbanization:
projections indicate approximately 67% of the global population will reside in urban areas
by 2050, up from 52% in 2010, with an already heavily urbanized United States seeing a
relatively smaller change from 82% to 89% in that same time period (United Nations,
2012). This is of particular interest given the amount of anthropogenic COz emissions that
currently come from cities, a number that is, unfortunately, difficult to pin down. Exactly

how much of current global CO2 emissions can be allocated to urban areas is still debated,



the technical aspects of which will be covered further in this review. Perhaps 30-40% of
global greenhouse gas emissions (of which CO: is only one such gas) can be attributed to
cities (Hoornweg, Sugar, & Gomez, 2011), while estimates of energy related CO; emissions
assert that approximately 71% come from cities, a discrepancy due to the inordinate
amount of land change related emissions that occur outside of cities (International Energy
Agency, 2008). Owing to the larger proportion of urbanization in the U.S. over global
averages (United Nations Department of Economic and Social Affairs, Population Divison,
2012), it can be reasonably assumed that the amount of CO2 emissions from U.S. cities is
higher than the global estimate. This leads to a substantial amount of anthropogenic CO>

emissions falling under local jurisdictions.

As urban populations increase, the importance of cities as concentrations of
economy, policy, and culture is maintained. These trends place cities in the unique position
of addressing climate change impacts and adaptations at the local level. Indeed, due to
inaction by national governments, many cities have taken the initiative to address climate
change issues by implementing policies to lower greenhouse gas emissions in their
jurisdictions. Thus the relationship between cities, carbon dioxide (CO2) emissions, and

climate change has become even more essential to addressing this complex issue.

This literature review will first briefly discuss the current knowledge of climate
change and the global carbon cycle. An examination of cities’ responses to climate change
through mitigation policies will then follow, specifically looking at greenhouse gas
inventories and other CO2 data and its integration into the decision-making process. I will

then examine the research on anthropogenic carbon emissions and its related energy



literature. In particular, there will be focus on the household sector, made up of residences
and their associated transportation, and the physical characteristics and environmental
factors that drive emissions in these areas. Finally, there will be a discussion of the human
drivers of household CO; emissions with an emphasis on income, race, and ethnicity. This
review will show that there are significant gaps in the analysis of the socioeconomic drivers
of COz, both in content and scale. A spatial analysis of a single urban system could
potentially take into account the sociological and economic variables of urban form, and

could better inform policy, climate scenarios, and our understanding of urban dynamics.

2.2 Climate Change and the Carbon Cycle

Climate change in this context refers to the modern change in Earth’s climate
brought on by increasing concentrations of atmospheric gases, termed greenhouse gases,
responsible for regulating Earth’s habitable temperature. As the main driver of
anthropogenic global climate change, COz emissions, and by relation carbon itself, have
received significant attention. Carbon cycling research examines the movement, fluxes, and

sinks of carbon through Earth’s reservoirs: the atmosphere, ocean, and land.

Anthropogenic carbon, from fossil fuel combustion and land change, is the third
largest carbon flux to the atmosphere. Current estimates put this flux at 9.9+.0.9 Pg of
carbon per year (1 petagram, or Pg, equals 10° metric tonnes), 8.7+0.5 Pg of which can be
attributed to fossil fuel combustion, with the remainder due to land-use change (Le Quéré

et al.,, 2009). This is a significant alteration to the global carbon cycle. Furthermore,



although carbon sinks, such as the oceans and land, have absorbed a significant amount of
this carbon, it is speculated that their ability to do so will weaken in the future (Canadell et

al, 2007).

Recognizing urban areas as important sources of carbon has led recent in
integrating urban dynamics - the political, social, and physical complexities of cities - into
carbon cycle modeling (Churkina, 2008; Pataki et al., 2006). This requires further
understanding of the urban drivers of anthropogenic CO; emissions as well as more

consistent, detailed, and available CO2 data.

2.3 City Policy

Reductions in CO; emissions at the individual city level are too small to affect global
CO2 concentrations, so without higher level policy from national governments there seems
to be little incentive for local action (e.g. Betsill & Bulkeley, 2007; Betsill, 2001; Engel &
Orbach, 2008). However, cities are taking the initiative on climate change mitigation
regardless, connecting a global issue with local issues. A large body of research has
developed around local motivations, analyzing why cities are taking action, the barriers
and processes to these actions, and analysis of the actions themselves (Betsill & Bulkeley,

2007).

Motivational studies have found government officials and planners very often link
climate issues to cost-saving ventures such as energy and building efficiency programs,

promote the environmental benefits of these policies, and in general are responsive to both
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larger-scale national and state pressures, as well as from local citizenry, groups, and
businesses (Engel & Orbach, 2008; Kousky & Schneider, 2003; Sharp et al., 2011; Sippel &
Jenssen, 2009). Very often, climate change mitigation benefits are linked to other benefits

such as these.

Cities wanting to explicitly address climate change mitigation often draft climate
change plans, a consolidation of actionable policies organized around the goal of reducing
local COz emissions (Boswell et al., 2010; Krause, 2011b; Tang et al,, 2010). These plans are
often explicitly linked to local greenhouse gas inventories. There is a large range of actions
that cities have taken to address climate change; Krause (2011b) identifies several types:
policies based on enabling as through positive incentives, policies based on authority as
through regulation or negative incentives, by providing services that influence wanted
behavior, and finally policies directed toward municipal operations. Examples of the types
of policies that can be tied to climate change include changing building efficiency codes,
changing their solid waste programs, and creating energy efficient infrastructure changes
to city property and projects (Betsill, 2001; Krause, 2011a). While many cities have
formalized climate action plans, and have taken actions in line with overarching policy,
Krause (2011a) notes that many municipalities are taking actions that reduce greenhouse

gases without being implicitly involved in a larger climate action plan.

Without a formalized policy framework however, and the reliable and accurate
information to drive that policy, it would be ineffective for cities to direct policies and
assess benefits and progress tied to climate change. Because of this, many local, state, and

national governments, businesses, and individuals track their greenhouse gas emissions,
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often utilizing the help of already established frameworks, such as the framework
established by Local Governments for Sustainability (to be discussed below) (Eggleston et

al,, 2006; ICLEI, 2012).

2.4 Anthropogenic Emissions and Greenhouse Gas Inventories

A greenhouse gas inventory tracks the flux of greenhouse gases, most notably CO2,
but also methane, nitrous oxide, and fluorinated gases (reported in their CO2 equivalents),
for a determined geographic area, such as a city or state, over a particular time period,
often a year. Both sources and sinks of COz can be inventoried. Emissions may be reported
by the particular sector that they originated from, such as transportation, waste,
residential, industrial, or municipal operations. Data from these inventories can be used for
target setting, evaluation of policies, projection of future emissions, and other analyses.
Greenhouse gas inventories have been used in international agreements such as the Kyoto
Protocol and the Copenhagen Accord, in international and national agreements between
cities, such as Local Governments for Sustainability (ICLEI) and the Mayors Climate

Protection Agreement (MCPA), and by individual nations, states, cities and researchers.

The United States, in accordance with the United Nations Framework Convention on
Climate Change, has been conducting yearly national greenhouse gas inventories since
1990. Emissions are tracked by type of greenhouse gas, sector of emission, and includes
sources as well as sinks (US EPA, n.d.). Energy related CO; emissions are the primary

source of greenhouse gases in the U.S., accounting for 81% of emissions in 2007 (U.S.
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Department of Commerce Economics and Statistics Administration, 2010). Of these energy
related emissions, household emissions, those CO2 emissions from household
transportation and residence, accounted for the largest, approximately 30%. Household
emissions are defined by the U.S. Department of Commerce as those energy emissions
related to residential fuel and electricity use, as well as light-duty vehicle related emissions,
approximated to be transportation associated with households. Consequently, research has

focused on the drivers of urban and household CO; emissions.

Local-level municipalities are also conducting greenhouse gas inventories. [CLEI
provides support and resources to municipalities who join, including help with greenhouse
gas inventories. Both the MCPA and ICLEI codify reductions in emissions for those
municipalities involved. As of 2010, 5% of U.S. cities were part of either the MCPA or ICLE],
covering approximately 30% of the U.S. population under formal, and local, climate policy
(Rachel M. Krause, 2011). Inventories are utilized as benchmarks to gauge progress and

effectiveness of greenhouse gas reducing policies.

Extensive amounts of data are required to understand the climate system and its
interaction with human and natural systems. Greenhouse gas inventories are just one tool,
but they have been used in scientific research to better understand both the biophysical
and socioeconomic driving factors of climate change, as well as to project future emissions
and inform policy. This type of research is heavily rooted in the energy and energy
metabolism literature, in engineering and in economics. The connection between energy
consumption and CO emissions is well established, generating interest in how to reduce

energy consumption, and thus COz, by improving the efficiency of infrastructure. In this
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vein, research has examined the drivers of CO; emissions and energy consumption,
analyzing the physical characteristics of the built and natural environment, as well as

demographic and socioeconomic factors.

The initial steps in these analyses, and in city climate action plans, is an accounting
of all the emissions associated with a particular place. Greenhouse gas inventories can take
place on different horizontal and vertical scales. The first greenhouse gas inventories were
done on the national level. Inventories at smaller scales, such as done by municipalities,
followed shortly after. The Intergovernmental Panel on Climate Change (IPCC) released
their first methodology for national greenhouse gas inventories in 1994. Individual states
have also conducted greenhouse gas inventories and ICLEI has recently released their
inventory procedures for cities and other community groups and organizations (ICLEI,

2012).

Methodologies vary in the approach to measuring CO; emissions. Some
methodologies have directly measured the fluxes of CO; as they vary spatially and
temporally within a city using direct measurements of CO2 (Wentz et al., 2002).
Greenhouse gas inventories however, utilize energy and consumption data as proxy
measurements of CO2. When the amount of fuel used is known we can then get a
measurement of COz emitted for that particular fuel. The amount of CO; utilized by each
sector - generally, industrial, commercial, residential, and transportation, but varies by
inventory needs - can then be determined (Glaeser & Kahn, 2010; Golley & Meng, 2012;
Gurney et al.,, 2012; Kennedy et al., 2010; Ramaswami et al., 2008; VandeWeghe & Kennedy,

2007). Some approaches also try to integrate the emissions associated with goods
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produced outside the inventory boundary area, but consumed within in an attempt to
correctly assign those emissions to those who are creating the demand. These types of
analyses typically use the household as the level of analysis. However, this is a very data

intensive process and so complete inventorying utilizing this approach has been limited.

Recent developments have focused on several key areas where data is missing or is
insufficient in inventories. County and city inventories are relatively recent tools, but
progress in the past few years has centered on making these inventories more consistent
and rigorous. These recent guidelines for inventory have been in response to innovative,
but inconsistent community level greenhouse gas inventories (S. Kennedy & Sgouridis,

2011).

There are several ways to account for greenhouse gas emissions, and determining
the best inventory procedures has been debated extensively in the literature. Issues arise in
inventories when considering scale, vertically or horizontally, when determining the
sectors to include, and how to assign the point of measurement of emissions (C. Kennedy et
al,, 2009). One of the more important discussions of greenhouse gas inventories concerns
the latter point, where CO2 emissions are counted: the source of their production (i.e. the
point of combustion of fossil), or should it be counted at consumption (i.e. at the final
source of the demand). The choice between a production or consumption based inventory
has significant impacts on finals results of inventories or analyses. Depending which is
used, the inventory will be more or less weighted towards municipalities, states, or nations
that have large discrepancies in trade of goods or electricity (Dodman, 2009; Larsen &

Hertwich, 2009; Peters & Hertwich, 2008; Satterthwaite, 2008).
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There have been few studies attempting to spatially aggregate CO2 emissions at
smaller scales than the city-scale. Several different methods of modeling emissions have
been developed. Top-down approaches utilize data from larger scales that, through various
modeling techniques and established variable relationships, is projected onto smaller
scales. Bottom-up approaches utilize information from very small-scales, say through
characteristics of known building types or through actual consumption information of
households, to extrapolate those values to larger scales (Swan & Ugursal, 2009). The Hestia
Project, which modeled county level emission data generated from the Vulcan Project to
the building level to create spatial and temporal visualizations of CO; emissions for the city
of Indianapolis, IN, is an example of a top-down method, utilizing utility data to verify the
downscaled-model (Gurney et al., 2012). In a different study, (VandeWeghe & Kennedy,
2007) spatially analyzed the distribution of CO2 by census tracts for the Toronto Census
Metropolitan Area as a way to assess the influence of urban form on emissions. They
utilized energy data reported at the census tract level for their analysis examining

variability in CO; emissions.

However, because of their immense and intensive data requirements, as well as
difficulties getting smaller-scale data from electricity providers, city greenhouse gas
inventories have traditionally been scaled to the entire city. Smaller scale data, at the
neighborhood level for example, could provide further levels of analysis and elucidate
spatial trends and patterns across the city. Paired with demographic data (see Hillmer-
Pegram et al. (2012)), these types of small-scale inventories could potentially help tease
apart important information and help guide policy decisions, just as inventories broken

down by sectors do.
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Once completed, greenhouse gas inventory data can be used in conjunction with
other types of data to analyze trends and drivers of emissions. Within these types of
analyses, there are several key areas that constitute the determinants of household CO>
emissions: the physical characteristics of buildings and urban structure, the biophysical
characteristics of the surrounding environment, family or household structure, and
socioeconomic factors. Many studies utilize multiple factor types, both the biophysical and

socioeconomic factors, as a way to predict emissions and create comprehensive models.

2.5 Physical Drivers of Carbon Emissions

A substantial portion of household CO; emissions research has been concerned with
the physical factors that can contribute to increased energy demand, and by extension CO-
emissions. Specifically, this research has identified factors that exist in the physical
structure and construction of residences, within urban form, as well as in biophysical
aspects of climate. Using U.S. urbanization rates we could predict that roughly 25% of
energy-derived COz emissions in the U.S. come from households within cities, and this
substantial amount of COz has driven research into understanding how they are created

with urban areas.

The research on urban form on household CO2 emissions generally examines the
impacts of density. While some explicitly look at population density (Glaeser & Kahn, 2010;
Kaza, 2010) others examine how urban form impacts transportation, and thus CO-

emissions (Brownstone & Golob, 2009; VandeWeghe & Kennedy, 2007). Density is also
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examined through analyses of differences between rural and urban households, although
there is no consensus in the literature as to the relative emissions between urban and rural
areas. While some support conclusions that cities actually produce less CO; emissions per
capita than in other areas (Dodman, 2009; Satterthwaite, 2008; Wier et al., 2001), others
find that rural areas produce less CO; per capita than cities (Heinonen & Junnila, 2011).
Possibilities for these discrepancies may lie in differing characteristics between countries
and cities, in the inherent heterogeneity that exists over large spaces and across cultures,
factors more related to climate or the socioeconomic characteristics of a particular place
than to urban form. Another possibility for the discrepancies may be found in how the CO;
emissions are determined: consumption versus production inventories. (Heinonen &
Junnila, 2011) specifically mention this problem and thus utilize a consumption-based
approach. The differences between rural and urban emissions in their study are most likely
due to income differences between rural and urban areas, with higher levels of income in
urban areas leading to higher levels of consumption, and thus energy demand. A
production-based inventory would have underreported the amount of emissions for high
consuming urban residents. Generally, density and urban form are found to be significant
contributors to household level CO2 emissions from both residences and transportation

(Norman et al., 2006)

Physical housing characteristics are also important: several studies examine such
factors as age of the residence, housing type (single family versus multi-family units), and
building size (Gurney et al., 2012; Kaza, 2010; Min et al,, 2010; Wier et al,, 2001). These
characteristics are extensively utilized in the modeling of energy demand and CO>

emissions (Swan & Ugursal, 2009). The relationship between these variables and CO>
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emissions is complex. For example, housing size generally contributes to higher CO;
emissions as there is more space to regulate temperature and this requires more energy.
Newer houses tend to be made of materials that are better at regulating internal
temperatures. Add in other housing characteristics and it quickly becomes complex when

attempting to understand how the interactions between these drivers affect CO2 emissions.

At larger scales there is interest in the influence of different fuel types and climates
on emissions. Generally, at the urban scale these factors play a significantly smaller role,
but at the regional or country level this can explain much of the variation in emission
intensities. Disparities in fuel types occur because of differential access to natural
resources (Glaeser & Kahn, 2010; C. Kennedy et al., 2009). For example, the Northwest
United States derives much of its electricity from hydropower, which is generally CO>
neutral, versus the Midwest which is more reliant on coal and natural gas, very CO>

intensive fuels.

The difference between comfortable residence temperatures and outside
temperatures contributes to the influence of weather and climate directly (Kristrom,
2008). Research and modeling of energy demand and COz more specifically utilizes both
the amount of heating or cooling required for a household, and thus energy demand at both
the larger scale of cities and the individual household level (Glaeser & Kahn, 2010; C.

Kennedy et al,, 2009; Min et al., 2010).

Overall the CO; emission and energy literature has created various methods for
creating CO2 data at multiple scales and has extensively analyzed these data sources for the

particular factors that may drive emissions. However, there is not always consistency in the
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analyses of these drivers; the complexity of cities and household energy demand
contributes to much heterogeneity in results. Household level drivers may consist of more
than physical or natural factors. There are particular socioeconomic factors that have been
established as important factors, and so are examined in addition to the biophysical

drivers.

2.6 Socioeconomic Drivers of Carbon Emissions

The socioeconomic drivers of CO; emissions has been unevenly studied, although
historically there has been considerable literature devoted to residential energy demand
and socioeonomics (Kristrom, 2008; Lutzenhiser & Hackett, 1993). As briefly mentioned
above, the relationship between income and CO emissions has been fairly well established
on multiple scales. However, race and ethnicity are particular social factors of CO>

emissions that have been studied only in limited ways (Estiri, 2013; Min et al., 2010).

2.5.1 Income

The relationship between income and CO; emissions has been best characterized
from an economic perspective, understandably given the direct connections between
energy demand, CO; emissions, and economic development. Considerable analysis has
centered on the Environmental Kuznets Curve (EKC), a hypothetical relationship between
economic growth and environmental degradation. This relationship follows an inverse U-
shape whereby economic growth stimulates an increase in total environmental

degradation. However, due to decreasing marginal environmental degradation, the curve
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ultimately reaches a peak. At this point as an economy grows total environmental
degradation begins to decrease. The argument follows that as countries gain affluence they
put a higher value on protecting the environment and thus reach the point where action

will be taken to reduce environmental degradation.

The hypothesis presented by the EKC has been analyzed in terms of income (as
economic growth) and carbon dioxide emissions (as environmental degradation). It’s
hypothesized that as income increases COz emissions will increase up to a point, and then
additional income will induce an overall decrease in total CO; emissions as there is a
recognition among the populace, or rather priorities may shift, that CO; is connected to
climate change and those associated environmental impacts. Several analyses have
controlled for potential spatial and temporal variation complications. However the
relationship between income and CO2 emissions is not consistent and other variables seem
to have significant influence on CO2 emissions, such as climate and fuel type (Aldy, 2005;
Burnett & Bergstrom, 2010). Multiple analyses across a variety of countries have found
differing results on the applicability of CO; emissions to EKC (Aldy, 2005), although the

relationship between CO; emissions and income itself have been consistently positive.

Although the economics literature has not found evidence for the EKC hypothesis in
connection with COz emissions, the positive relationship between COz and income is fairly
well established. Energy demand, and by direct connection CO; emissions, is derived
primarily as a means of economic development. Rising incomes result in higher demand for

goods and services and the energy needed to provide them.
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At the global level, analyses of COz emissions and gross domestic product (GDP)
reveal a positive relationship (Ramanathan, 2006; Tucker, 1995). Large scale climate
modeling utilize scenarios as key inputs, where, these projections about future
demographic and economic trends specifically take into account the influence of GDP as a
measurement of economic activity, and thus a driver of energy demand and CO; emissions.
The IPCC directly addresses the relationship between GDP and CO; emissions in their
Special Report on Emissions Scenarios and in their Assessment Reports (Metz, 2007;
Nakicenovic et al,, 2000). In analyzing cities from multiple countries, (C. Kennedy et al.,

2009) found that income was positively correlated to emissions.

Measures of income are consistently included in analyses of household CO2
emissions (Estiri, 2013; Golley & Meng, 2012; Kaza, 2010; Kerkhof et al., 2009; Min et al,,
2010). This empirically makes sense; as household incomes rises the demand for larger
residences increase. Additionally, there is a strong correlation between increasing incomes
and movement away from traditional city centers; these suburbs increase commute times
and thus transportation costs and associated CO; emissions (Kahn, 2000). Furthermore,
results from the 2001 National Household Travel Survey indicate that income is positively
associated not only with increased number of trips and travel distance, but also in the
number of vehicles owned (Pucher & Renne, 2003). Finally, the poor are more likely to

utilize public transportation lowering their emissions (Glaeser & Kahn, 2010).

While much of the literature on household consumption and CO2 emissions does
take into consideration socioeconomic, demographic, and physical housing variables as

mentioned previously, there is a distinct lack of analysis across the spatial area of a city.
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Spatial dynamics in urban structure and in socioeconomic and institutional forces can have

significant influence on where and how people live.

2.5.2 Race and ethnicity

Sociology and urban studies have already devoted extensive resources to
understanding housing and transportation inequality. Three determinants of housing are
generally considered: housing choice, economic decision-making, and institutional factors.
Of these however, more weight has been given to these historical and modern institutional
forces that have segregated particular classes and races of people in American cities. While
outright discrimination is outlawed by the Fair Housing Act, other avenues of
discrimination that are more difficult to uncover and address still exist (Charles, 2003;
Roscigno, Karafin, & Tester, 2009). Situations of housing discrimination require the direct
action of the affected party, and, when considering the often marginalized populations
involved, many of whom do not have access to the resources or knowledge required to
undertake such a task, cases of housing discrimination are likely underreported (Roscigno
et al.,, 2009). Particular populations are more likely to face discrimination than others. Of
the most affected groups, poor blacks have been subject to significant and extreme

historical segregation perpetuated by outright discrimination by the housing sector.

From this historical and modern spatialization of race across the urban space there
emerges the possibility of a link between race and ethnicity and household CO;. For
example, the movement of higher income and predominantly white families (Charles,
2003) to the suburbs is associated with higher levels of CO2 emissions (Kahn, 2000). In

analyses of residential energy demand, the literature has looked at energy as being driven
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by consumption of goods and services, ultimately examining behavior as the driving force.
Household consumption may vary by income, as the previous section can attest, but also by

class, and race and ethnicity (Lutzenhiser, 1997).

Transportation inequity, closely linked to housing inequity, has different primary
institutional actors, and its actions are much less direct. For instance, the flight of the upper
classes, predominantly white, to the suburbs away from the core of the urban areas has
also shifted transportation dollars (Garrett & Taylor, 1999). Funding is increasingly being
spent on commuter rails and other types of transport to connect suburbs and outlying
areas to jobs. The dollars spent per person is much higher in these cases than for inner-city
transit. For marginalized populations that rely heavily on public transportation, this
transfer of funding can have important and lasting affects, essentially isolating these
communities further (Garrett & Taylor, 1999; Pucher & Renne, 2003). Predominately poor

as well, access to personal vehicles may not be possible.

(Kahn, 2000) makes a connection between movement from inner city to suburbs as
driving up household transportation costs, time, and distance, and thus, CO2 emissions. The
historically established movement of white households from the inner cities to the suburbs
is tied to a possible relationship between race, ethnicity, and household transportation CO,.
While private vehicle use does not vary significantly between race and ethnic groups,
minorities are more likely to utilize public transit, and thus decrease their transportation
CO2 emissions (Glaeser et al., 2008; Pucher & Renne, 2003). It has also been found that
minorities have longer commute times (Doyle & Taylor, 2000; Shen, 2000). These two

factors are confounding each other, making it difficult to synthesize conclusions related to
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increased COz emissions from those results; public transportation both increases commute
times and reduces CO2 emissions. Research that disentangles commute times and public
transportation usage would be better able to address the impacts on COz. In a similar vein,
(Antipova, Wang, & Wilmot, 2011) analyzed land uses and socioeconomic variables as they
relate to commuting distances and times. Minority households were found to be
significantly related to commuting times, but no significant relationships were found
between minorities and commuting distance. If this difference in time is caused by using
public transportation, than this would indicate a negative relationship between minority
households and CO2 emissions. (Brownstone & Golob, 2009) found negative relationships
between race and ethnicity variables and vehicle fuel consumption, leading support to the
hypothesis that race and ethnicity leads to decreased transportation CO2 emissions.
Association, positive or negative, with transportation CO2 emissions and race or ethnicity is
difficult to synthesize, and there is little research that explicitly examines these
connections. The literature on transportation inequity, explicitly tied to housing inequity,
and its resulting conclusions of less vehicles owned, higher usage of public transportation,
and less fuel usage lends support to differing transportation COz emissions among

minorities.

Ultimately transportation is connected back to housing, where people are located in
the space of the city. While studies have implicitly understood this impact of space by
understanding the affects of differing energy prices, variable climate, and general housing
structure, very few studies have looked at this at the small spatial scale. Without any direct
analysis of these socioeconomic factors, income (or class) and race/ethnicity, and enacting

we may not be able to synthesize a complete understanding of urban CO..
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The question then becomes, how does income and housing segregation, or the
spatial consequences of these variables, affect household CO2 emissions? The relationships
between these variables are complex and difficult to tease out. On one hand, lack of access
to a personal automobile or increased usage of public transportation would result in less
CO2 emissions related to transportation. On the other, housing next to accessible public
transportation can increase property values, causing gentrification and pushing
disadvantaged populations out. With no comprehensive analysis of the interactions

between these socioeconomic variables and household CO; we are left in the dark.

2.6 Conclusion

The literature examining the factors that influence energy driven CO; emissions is
deep; research abounds studying the influence of physical characteristics of housing and
urban structure on household CO; emissions. However, a distinct lack of research on
smaller scales means urban dynamics haven’t been thoroughly examined. Recent advances
in small-scale CO2 emission modeling has opened up more possibilities for analysis at
scales smaller than a city. This allows the spatial distribution of CO; emissions across a city
to be analyzed and for more careful analysis of the drivers of urban anthropogenic CO>
emissions. Additionally, because cities are both geographically located in relatively small
areas, and because cities are the most local unit of governance, there is less variability
across its footprint by some large biophysical drivers. An analysis could better control for
differences in climate and policy and perhaps other exogenous variables. Given the

implications of climate change and the continuing efforts of local action on that issues, a
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better and more nuanced understanding of urban carbon dioxide emissions could be
beneficial in informing policy. Accordingly, this research proses to examine the

socioeconomic drivers of COz emissions within the boundary of a major metropolitan area.
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Chapter 3: Methods

3.1 Aim and Objectives of Research

The main objective of this study is to analyze and address the influence of household
socioeconomic variables on household CO2 emissions at the sub-city-level by incorporating
and identifying the influence of space; that is, the interactions of these variables and other
unmeasured factors between neighborhoods. This study has three main objectives. First,
the influence of spatiality in the analysis of neighborhood-level CO2 emissions across a city
will be specifically controlled for and examined. Second, this study will analyze, and
attempt to find further support for, the influence of household income on household CO>
emissions. Third, this research will attempt to analyze the influence of race and ethnicity of
households on household CO; emissions. Finally, all of these analyses will be performed
separately for total household CO; emissions (which consists of residence household CO>
emissions and transportation CO2 emissions), as well as for residence household CO>
emissions and transportation COz emissions, in order to examine the differing relationships

among these household sectors.

These objectives can be broken down into three general hypotheses, and further
defined by the three CO> variables, total, transportation and residence household CO;

emissions, creating 9 total hypotheses:

1) Income

Household Income has a positive relationship with total household CO;
emissions, transportation emissions, and residence emissions, respectively.
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2) Race and ethnicity

The race and ethnicity of a household has a significant relationship with total
household COz emissions, transportation emissions, and residence emissions,
respectively.

3) Spatial variables

For the total household CO, transportation, and residence statistical models,
the spatial lag regression will produce a better overall fit than the OLS
regression.

To test these hypotheses, data was gathered from independent outside sources and
organized at the census tract level. OLS regression, exploratory spatial data analyses and

spatial lag regression analyses were performed on the resultant dataset.

3.2 Study Area

Data availability determined that the analyses would be carried out for the city of
Indianapolis, IN. Indianapolis is the capitol of Indiana and the county seat of Marion
County. Indianapolis and Marion County form a consolidated city-county - they have
merged into one single jurisdiction, termed Unigov. During this merger, some previously
incorporated cities within Marion County elected to retain their autonomy from Unigov.
Similarly, some towns, although now included within Unigov, retain some independent
government functions. The term balance - as used in Indianapolis (balance) - is a census
term used to designate the area of Indianapolis-Marion County that excludes these
particular cities and towns. As of 2010 the population of Indianapolis (balance) was

820,445, the 12t largest city in the United States. This analysis however, utilizes data from



2000 when the population of Indianapolis (balance) was 781,870. The population of
Marion County in 2000 was 860,454. The county is largely urbanized, with 99% of the
population residing with census designated urban areas. Indianapolis is much less dense
than many similarly populated cities such as San Francisco, CA, but is similar to Phoenix, AZ
in density. There are a total of 212 census tracts in all of Marion County, however only 210
are employed in the analysis because of insufficient data for two of the tracts (Figure 1).
Because of the close geographic and demographic similarities between Indianapolis
(balance) and the entirety of Marion County, this analysis will be conducted on the entire

county.
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Figure 1: Inset map of Marion County - Indianapolis in the state of Indiana. There are 212 census tracts in the
county, however only 210 are used in this analysis. Unused census tracts are shown with white hatching.
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3.3 Data

3.3.1 Variables

3.3.1.1 Residence COz Emission Data

Household CO; data was gathered for two separate sources: emissions associated
with the residence and emissions associated with household transportation. First,
household residence CO; was obtained from the Hestia Project. They used downscale
modeling techniques to determine building-level CO2 emissions of the residential,
commercial, and industrial sectors for the entirety of Marion County in 2002 from county
estimates of CO; emissions (see discussion below). Residences were identified using
building parcel data from the Marion County Assessor’s Office (Gurney et al.,, 2012). The
downscaling process utilized in the Hestia Project defined general physical factors of each
residential building such as age and type (e.g. apartments versus single-family detached
home) as a function of energy use intensity (EUI), that is, the energy used per unit floor
area. Each residential building was placed into eight EUI categories and its total energy use
was found through its EUI and its size (Zhou & Gurney, 2010). In general, this modeled
function corresponded to higher EUI and thus higher CO; emissions with older and larger
buildings. This downscaling process does not consider particular unique characteristics
that are specific to each individual building itself, such as remodels and retrofits or the

quality of building that could potentially impact CO2 emissions.

For its CO2 input, the Hestia Project used county-level CO; emission sector estimates
from the Vulcan Project, another downscaling endeavor which itself utilized projections

from Environmental Projection Agency and state-level reporting on energy utilities
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(Gurney et al., 2012; Zhou & Gurney, 2010). Mapping CO; emissions at a scale smaller than
the city scale is relatively new and thus very little to no data exists at small-scale levels. CO2
data from the Hestia Project was the limiting factor that necessitated analysis of
Indianapolis, IN because it was the only source from which small-scale residential CO>

emissions could be obtained.

3.3.1.2 Transportation CO; Emissions Data

Second, data for CO2 emissions attributed to household transportation was acquired
with permission from the H + T Affordability Index created by the Center for Neighborhood
Technology. The 2009 H + T Affordability Index uses data from the Census Bureau’s 2009
American Community Survey (ACS) 5-year (2005-2009) yearly estimates as its primary
dataset to model housing and transportation costs at the census block group level.
Transportation costs were modeled as part of a houses location based on auto ownership,
auto use, and transit use. Vehicle miles traveled were calculated as part of auto use, and
CO2 emissions associated with transportation per household were thus calculated from

these models.

Socioeconomic data was procured from the U.S. Census Bureau for the 2000 Census
at the census tract level for Marion County. The census is designed to obtain counts of the
entire U.S. population as well as additional demographic characteristics such as race and
ethnicity. Demographic data is thus accurately available for the entire United States at
extremely small scales. ACS data was deemed unfit for race/ethnicity data because of large

margins of error at the small spatial scales required for this analysis. Independent variables
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utilized for this analysis include median income, race and ethnicity (Asian and black

households), median age, and household size all received from the U.S. Census Bureau.

3.3.1.3 Spatial Data

The level of analysis is the census tract, a geographic area, designated to be between
2,500 to 8,000 people, by local census statistical areas committees using guidelines
established by the U.S. Census Bureau (United States Census Bureau, 2000). Marion County
has 212 census tracts in total, but only 210 were utilized in this analysis because of missing
data. One census tract was omitted because of missing census data (as shown in both the
2000 Census and 2009 ACS), the other because of missing residence CO; data. Shapefiles
for Marion County census tracts were procured from ESRI for the 2000 Census. These files
were transformed into GIS shapefiles by ESRI using the U.S. Census Bureau’s TIGER

database.

3.3.2 Data Preparations

Variables were compiled into a spatial database using ArcMap 10. While
socioeconomic data from the U.S. Census Bureau was obtained at the census tract scale,
both CO; emissions for residence and transportation were reported at smaller scales.
Residential CO; data as gathered from the Hestia Project was organized in a GIS shapefile
with individual polygons for each building. A spatial join was performed on this data with
the Marion County census tract shapefile (obtained from the ESRI Census 2000 TIGER/Line
Shapefiles database) using the center of each building polygon as a bias-free criterion to
aggregate the buildings to the census tract. As part of this operation CO; emissions were

summed from each building polygon to create census tract totals of residential COz, which
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were were then divided by the number of households for each tract, obtaining average
household residence COz emissions. Transportation CO2 data was organized at the census
block group level. Block groups are the statistical spatial groups organized within census
tracts. Data was transferred into Excel where the block groups and their associated
attributes were aggregated through summation to their respective census tracts.
Subsequently, the transportation CO; data was moved into ArcMap 10 and joined to the
census tract shapefile. Residence CO; emissions per household and transportation CO;
emissions per household data were summed to create total COz emissions per household
per census tract. All CO2 emissions are reported in average COz emissions per household
per census tract. The polygon census tract feature class thus has associated with it that
tract’s average household residential CO2, average household transportation COz, average
total household CO2, median household income, distribution of race and ethnicity
(percentage Asian and black households), average household size, and average age.

Average household CO; data is reported in metric tons (t) of CO; emitted per year.

3.4 Limitations

There were several limitations to this study. First, data requirements have thus far
held back extensive study at the neighborhood scale. The city of Indianapolis, IN was
chosen for this study because the type of fine-scale data required was only freely and
readily available for that city. If further analysis is to be done on other cities, fine-scale data
will have to be produced first, which is an expensive, extensive, and difficult task.

Hopefully, with continuing advances in modeling, that will become possible. This lack of



accessibility has implications for this current analysis, however. Due to these difficulties
with fine-scale data, several additional limitations were imposed on the analysis as

discussed over the next paragraphs.

Second, the type of data utilized in this study cannot account for behavioral
differences. Household emissions for transportation COz and residence CO; were derived
from different modeling processes and from different sources. These models did not
necessarily take into account behavior factors. For example, the residential CO; data
derived from The Hestia Project was created using downscaled CO2 emissions at the
building scale for the commercial, residential, and industrial sectors of Indianapolis, IN. The
nature of the downscale modeling process, utilizing large-scale characteristics such as year
and square footage, meant individual changes to buildings could not be factors of that
model. Homes that had upgraded to energy efficient windows or insulation for example,

would not see this reflected in their CO, emissions.

Third, the data used in this analysis does not cover the totality of emissions
associated with households. Consumption is not captured in this modeling process at all.
There is an entire section of economics research devoted to this issue, that will not be
discussed here, but this is a significant amount of CO2 emissions to not include in the
modeling. Additionally, the residence CO; data was derived from point emissions only. This
means natural gas emissions were modeled to the households as would be used in central
heating, for example. But electricity data, of which the point source of fuel combustion is a
power plant, was attributed to that power plant in the Hestia Project and is not attributed

to the household. However, because CO, emissions were attributed to all households,
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regardless of their actual consumption of natural gas for heating, this analysis may still pick

up on overall trends and patterns in the relationships between variables.

Finally, the data obtained for analysis was from different years. Explanatory
socioeconomic variables were obtained from the 2000 Census. Household transportation
CO2 was modeled using data from the 2009 ACS 5-year (2005-2009) estimates, although
the data was organized using 2000 Census boundaries. Household residence CO2 was
modeled using emissions estimates for 2002. These differences are insurmountable for this
particular study; analysis needs necessitated these datasets. The difference between these
two sources and the 2009 ACS and resultant transportation CO2 emissions may be slightly
difficult to justify, but since that dataset utilized 2000 Census boundaries, not to discount
the intensive time demands in any attempt to project onto 2010 Census boundaries, it was
deemed tolerable. The difference between the 2000 Census data and the 2002 residence

CO2 emissions is more acceptable.

3.5 Statistical Analysis

Neighborhoods are not disconnected units. Spatial dependency exists between
contiguous neighborhoods, and interactions between them must be taken into
consideration when performing statistical analyses or the reliability of results may be
overestimated. According to (Ward & Gleditsch, 2008), “ignoring spatial dependence will
tend to underestimate the real variance in the data.” To assess whether spatiality exists

within the variables, a spatial weights matrix is constructed as a descriptor of the spatial
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relationships between individuals, in this case individuals being census tracts. The spatial
weights matrix can be structured in several different ways, either utilizing distances
between individuals or through assessing shared boundaries between neighbors. The
shapefile containing the Marion County census tracts and associated variables was
transferred to OpenGeoDa 1.2.0 (2012) for exploratory spatial analysis and to construct a
spatial weights matrix to employ within these analyses. For this study a boundary based
matrix was chosen, specifically a queen contiguity based spatial weights matrix was chosen
over the rook contiguity based spatial weights matrix as a better overall fit. Exploratory
analysis showed minimal differences in final regression fit between the queen-based
contiguity matrix and rook-based contiguity matrix, but the distribution of connections was
found to be more normal in the queen matrix than the rook. This along with considerations
of possible connection between census tracts, pointed towards selecting the queen matrix.

This matrix was constructed using GeoDa.

A typical regression can be expressed as

y=xB +¢, (1)

where y is the dependent variable, x is the independent variable, 3 is the slope of the
regression equation, representing the relationship between the x and y variables, and €
represents the error of the equation. The spatial lag regression model incorporates the
spatial autoregressive term, pWWy, on the right side, accounting for the influence of the
neighbor on each census tract, an influence that is actually a weighted average of the

surrounding neighbors. Thus, following Anselin (1988),
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Y=pWy+ X +¢. (2)

In this spatial lag model p is the autoregressive parameter and W is the constructed spatial
weights matrix, which in the case of this study is the queens contiguity spatial weights
matrix as discussed earlier, whereby both parameters work on a right side y variable to
complete the spatial autoregressive term. Both the Y and X are in matrix form, as consistent

with the rest of the model (Ward & Gleditsch, 2008).

Three regression models were created: one each for average total household CO>
(total CO2), average household transportation CO; (transportation COz), and average
household residence CO; (residence COz). Ordinary Least Squares (OLS) regressions were
carried out on the three models. The resultant regression residuals were tested for spatial
autocorrelation using Moran'’s I test. Positive spatial autocorrelation in the residuals
revealed the presence of spatial dependence in the variables. According to Lagrange
Multiplier tests ran on the OLS regressions (Equation 1), and through theoretical
considerations, the spatial lag model (Equation 2) was selected over the spatial error
model, another type of spatial regression where the influence of space is seen to be an
error and thus treated as such. The data and spatial matrix were transferred to Stata/SE
12.0 (2011) for use in the Stata module SPMLREG (Jeanty, 2010). Spatial lag regressions
were performed in Stata on the three CO2 models using the queen contiguity spatial
weights matrix to construct a spatially lagged CO; variable to account for spatial

dependencies.

Persistant heteroskedasticity among the residuals, even after the log transformation

of median income lent support for robust standard errors over regular standard errors.
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Huber-white estimators (robust standard errors) can be use to compensate for the possible
effects of heteroskedasticity and non-normality of residuals in overestimating standard
errors, and thus, p-values, leading to skewed inferences. The inclusion of these robust

standard errors does not affect coefficients.

Tests were carried on the residuals of all the models to assess for spatial
dependency. All regression results were transferred into GeoDa to perform Local Moran’s |

on the residuals.
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Chapter 4: Results

4.1 Descriptive Statistics

The dependent and independent variables exhibit clear variability and spatial

clustering throughout Marion County. Table 1 provides quick quartile descriptions of each

variable. The dependent variable total household CO2 is a summation of household

transportation and residence CO2 emissions. Evident from Table 1 is the discrepancy

between transportation and residence COz emissions: at the low-end residence COz barely

registers in at least one census tract. This is likely due to to issues in the downscale

modeling process.

Dependent Variables
Total CO; (t)
Transportation CO, (t)
Residence CO, (t)
Independent Variables
Median income (S)
Median age

Average household size
% Asian

% Black

Five Number Summary from Across Census Tracts

Minimum
4.564
4.438
0.003

13,125
21.9
1.39
0.00
0.09

Q1

8.238
7.215
0.750

29,798
30.7
2.18
0.27
3.03

Q3 Maximum
9.481 13.067
8.243 10.976
1.435 5.287

49,794.5 133,479
37.6 51.8
2.63 3.20
1.44 7.79

39.74 98.17

Table 1: Five number summary of independent and dependent variables. Presented are the minimum, first

quartile, median, third quartile, and maximum value across all census tracts.
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Figure 2: Average household transportation COz per census tract in Indianapolis, IN.
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Figure 4: Average total household CO2 per census tract in Indianapolis, IN

The difference at the median between transportation COz and residence CO: is
approximately 7 t. Variability within the transportation and residence CO> variable is
evident, the range for each being approximately 5t and 6t respectively, while total
household CO: sees a range of around 8 t. Examination of the dependent variable across
their respective maps reveals evident visual clustering. Transportation CO; increases as
one moves away from the center of Marion County (Figure 2). Residence CO; exhibits less
easily identifiable clustering, but several areas of clustering do exist at several places
(Figure 3). Total CO2, an amalgamation of both variables, has notable clustering around the
outskirts of Marion County, especially near the southern edge, while the center also

exhibits apparent high levels of low-value CO; emission clustering (Figure 4).
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Race and ethnicity ranges and clusters noticeably across the county. Asian
households, absent entirely from some census tracts, are not present in considerable
numbers across Marion County. For example, the median percentage of Asian households
per census tract is 0.65%, with a maximum being approximately 7.8% of Asian households
per tract. Those few census tracts with significant Asian populations are located
predominantly in two clusters, one just northwest of the center of Indianapolis and then an
additional sector that is directly north of the center, at the boundary of the county (Figure
5). A clear contrary to Asian households, black households range from approximately
0.08% to just over 98%. The map of black households (Figure 6) indicates an area of
considerable clustering just north of the center of Marion County, that does not quite reach

the county line, and where concentrations of black households are around 50%.

Income also reveals significant variation and clustering throughout Marion County.
Especially stark is the range of the median income of households per census tract across
census tracts, from $13,125 to $133,479. Median household income for Marion County was
$40,421 in 2000, close to the 2000 national median income of $41,994. Median household
income across census tracts for Marion County is $35,547.50, a discrepancy due to
differences in the scale of analysis: each census tract has varying number of households.
Examining the map for income (Figure 7) the clustering is especially evident along the
border of the county, where high levels of income per household are in clear contrast with

the center of Marion County where income per household is considerably lower.
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Figure 5: Percentage of Asian households per census tract in Indianapolis, IN.
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Figure 6: Percentage of black households per census tract in Indianapolis, IN.
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Figure 7: Median household income per census tract of Indianapolis, IN.

4.2 Statistical Analysis

Visual inspection of the maps illustrating the average CO; - total, transportation,
and residence - of households per census tract indicate spatial clustering in fairly distinct
patterns. Moran’s [ statistical tests can reveal the extent and significance of these spatial
patterns, statistically determining when clustering or dispersal of variables is present. The
Moran’s [ was ran on each of the CO2 variables, and indicated significant spatial clustering
among all three, supporting the use of spatial lag models to control for that spatial

autocorrelation among residuals (see Appendix A for results).
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Moran's |

oLS

Total CO2 0.267 *
Transportation CO2 0.484 *
Residence CO2 0.278 *
Spatial Lag

Total CO2 0.022
Transportation CO2 -0.029
Residence CO2 0.096 *

Table 2: Moran's I test for spatial dependency
among the residuals of the regression models.
P-values are based on replications where
significant p-values denote spatial dependency
among the residuals. * denotes significance at
p<-01

Additionally, Moran’s I tests were ran on the residuals of the three OLS regression
models. Spatial dependency was found in the residuals of all OLS models with particularly
evident clustering found in household transportation COz model. Table 2 compares Moran’s
[ tests from the OLS and spatial lag models. Improvements were made in all spatial lag
models. Additionally, neither the Moran’s on the residuals of the spatial lag model for total
CO2 and transportation CO: are significant at all, indicating that we cannot reject the null
hypothesis that the data is randomly distributed (not clustered or dispersed). Figure 8
illustrates the output of a Local Moran’s I on the residuals of the total CO2 OLS regression.
Clustering of the residuals is evident. Figure 9 contains the results of the Local Moran’s of
the total CO; spatial lag regression. Although a clustering of values is still present in the
spatial lag residuals, comparison between the two maps indicates a reduction in overall
clustering. Local Moran’s I maps for the transportation and residence CO; OLS and spatial

lag models follow similar patterns and trends.

AA



Total Household CO;
OLS Residuals

/ |:| Not Significant
Il High-High
| - Low-Low
[ ] Low-High
[ ] High-Low

TV T

o 2 4 8 Miles
T T I T N B

Figure 8: Local Moran on residuals of total household COz OLS regression model.
Significant clustering is represented by the Moran clustering typology. High-high and
low-low designate clustering of positive spatial autocorrelation, while high-low and
low-high designate spatial outliers or negative spatial autocorrelation. Typology
designates the core of the spatial autocorrelation. Significant replication at p<0.05.
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Figure 9: Local Moran on residuals of total household CO: spatial lag regression model.
Significant replication at p<0.05. The legend is as described in Figure 8.
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The spatial lag regression models for total CO; and transportation CO2 made
particular improvements, approximately eliminating spatial dependency among residuals

and testing for non-significant Moran’s I. The regression model for residence COz saw a

decrease in Moran's [, however it still tests significantly for spatial dependency (Table 2),
and thus this particular model does not adequately control for all spatiality, although it is
reduced. This is sufficient support that spatial regression techniques should be utilized to
reduce spatial autocorrelation among residuals and improve the model (see Appendix B for

Local Moran’s of other models).

Results from the spatial lag model regressions are displayed alongside their OLS
counterparts in Table 3 to demonstrate improvement in overall fit of models after the
inclusion of the spatial variable. Because R? values do not hold when spatial dependence is
present, the log likelihood can be used to assess goodness of fit (Anselin, 1988). Among
each modeled dependent variables of CO, the log likelihood increases with the
introduction of the spatial elements of the regression model over their OLS counterparts.
For example, the total CO2 OLS model has a log likelihood (df=204) of -181.425. The total
CO2 spatial lag model has a log likelihood (df = 203) of -141.636, an increase that indicates
an improvement in the fit of the model. Figure 10 illustrates, through a regression
scatterplot, the values of the modeled total CO; spatial lag regression against the observed
values of total CO2 per census tract. The regression fits well until higher levels of CO2, and
then the variability between the modeled values and observed values increases slightly
(see Appendix C for scatter plots of the other spatial lag models). Using Wald Tests to

assess the hypotheses of the spatial lag models (again, because R? cannot be used in spatial
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lag regression) we find that all models, total CO2 (x?203,210 = 314.9, p <.001), transportation
CO2 (X?203,210 = 136.1, p <.001), and residence COz (X?203,210 = 117.5, p <.001) are

significant (Anselin, 1988).

The direction of coefficients is consistent across all spatial lag models for each
explanatory variable, however there is considerable derivation in the explanatory power of
variables. Standardized beta coefficients can be used to compare coefficient strength.
Median income has the most influence in the total CO; and transportation CO2 models,
although household size also has a strong influence, and in some cases (i.e. transportation
C032), this coefficient is only slightly smaller than the coefficient for median income. The
median age also explains a significant amount of this model as well. In the residence CO>
model however, both household size and age, first and second most influential respectively,
have more influence than income. P-values for these three variables are significant in all

spatial models to at least the 0.001 level.

Total CO2 Spatial Lag Regression
t CO2 per household

15

13

11

Actual CO2 Emissions
O

3 5 7 9 11 13 15
Predicted CO2 Emissions

Figure 10: The regression plot of total household COz emissions of the predicted model
by the observed emissions for the spatial lag regression.
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Variation exists in the direction and significance between the race and ethnicity
variables and the CO2 dependent variables. Black households exhibit a positive association
with CO: in all models, although both the coefficients and standardized (beta) coefficients
are small and thus have weak influence. By contrast, Asian households have a negative
association with CO, although the coefficients are similarly small and have weak influence.
Asian households do not test significantly in the transportation CO2 model and is only
tenuously significant in the residence CO; model with a p-value of 0.059. Black households

attain significance at the 0.05 level in the residence CO2 model with a p-value of 0.045.

The lagged spatial variable has a consistently strong and significant influence in all
three spatial models. The influence of the weighted CO: variable is strongest within the
transportation COz model. Here, the weighted spatial variable has the highest standardized
coefficient (Beta = 0.675) between all other variables and also exerts considerable change
on the coefficients of the variable when introduced into the model. For example the
coefficient of the log of median income in the OLS transportation COz model diminishes
from 1.605 to 0.525 in the spatial lag model. A similar change is noticed in the total CO>
model where the weighted variable (Beta = 0.337) leads to a decrease in the log of median
income from 2.145 in the OLS model to 1.418 in the spatial model. The weighted spatial
variable exerts less influence in the residence CO2 model (Beta = 0.193) compared to the
others, although there is observable influence from this variable on Asian households and

median income, reducing the coefficients of both in the spatial lag model.
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TOTAL HOUSEHOLD CO,

oLS Spatial Lag
Log likelihood = -181.425 Log likelihood = -144.636
coefficient  p-value beta coefficient p-value beta
Median Age 0.050 0.000 0.204 0.053 0.000 *** 0.219
Black Households 0.005 0.001 0.133 0.005 0.001 *** 0.114
Asian Households -0.168 0.000 -0.166 -0.110 0.017 ** -0.108
Average Household Size 1.402 0.000 0.402 1.244 0.000 *** 0.357
Log Median Income 2.145 0.000 0.695 1.418 0.000 *** 0.459
Constant -18.783 0.000 -15.328 0.000 ***
Spatial Variable 0.498 0.000 *** 0.337
TRANSPORTATION CO,
oLS Spatial Lag
Log likelihood = -195.916 Log likelihood = -77.637
coefficient  p-value beta coefficient p-value beta
Median Age 0.014 0.204 0.074 0.020 0.000 *** 0.104
Black Households 0.002 0.196 0.071 0.002 0.012 ** 0.067
Asian Households -0.062 0.168 -0.077 -0.023 0.360 -0.028
Average Household Size 0.878 0.000 0.318 0.592 0.000 *** 0.215
Log Median Income 1.605 0.000 0.657 0.525 0.000 *** 0.215
Constant -11.759 0.000 -6.395 0.000 ***
Spatial Variable 0.834 0.000 *** 0.675
RESIDENCE CO,
oLS Spatial Lag
Log likelihood = -134.459 Log likelihood = -125.132
coefficient  p-value beta coefficient p-value beta
Median Age 0.035 0.000 0.294 0.036 0.000 *** 0.295
Black Households 0.003 0.020 0.153 0.003 0.045 ** 0.126
Asian Households -0.106 0.002 -0.210 -0.078 0.059 * -0.155
Average Household Size 0.524 0.000 0.302 0.534 0.000 *** 0.309
Log Median Income 0.540 0.000 0.352 0.474 0.010 *** 0.309
Constant -7.023 0.000 -6.819 0.000 ***
Spatial Variable 0.399 0.000 *** 0.193

Table 3: OLS and spatial lag model regression results. For spatial lag regression * indicates weakly significant
results at p <.10, ** indicates significant results at p <.05, and *** indicates significant results at p <.01.
Comparison of p-values between the OLS models and spatial lag models is not recommended as the spatial lag
models use robust standard errors at the OLS models do not.



Chapter 5: Discussion

The urban scale provides a unique analysis opportunity. Its relatively small scale, as
compared to state or national levels, renders several common variables that are seen to be
drivers of CO2 at larger scales, such as climate or fuel type, negligible. At the same time, the
diversity and variability of populations across the urban gradient allows for a careful

analysis of all these groups.

Household CO; emissions vary considerably across Indianapolis, disaplying visually
apparent and statistically significant spatial patterning. The variation in these emissions
within and across Indianapolis, lends support to an analysis that addresses the factors that
drive these emissions. In conjunction with proposed socioeconomic factors, our
understanding of household emissions will be improved. It is by first examining the factors
that drive the variability in CO2 emissions that we can efficiently and effectively improve

strategies and policy directed at combating CO; emissions within cities.

Results from the spatial lag regression indicate the importance of including spatial
analysis in modeling at this scale. There is clear support for the spatial lag regression when
considering the improved modeled fits via log likelihood measurements from the OLS
models to the spatial lag models. The reduction in spatial autocorrelation among residuals
(as measured by Moran'’s I) between OLS and spatial lag models further reinforces the
importance of the spatial model. Importantly, although there is, generally, static or
declining explanatory power among coefficients with the integration of the spatial

variables, the explanatory power of almost all the variables remain significant or become
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significant with the introduction of spatiality. These results support the hypotheses
presented in this paper that socioeconomic variables are strong predictors of urban COz,
and that space is an important concept that should be integrated into analyses at this scale,
potentially providing useful information to policy makers on local climate change policy

and helping expand the current knowledge on climate change drivers.

5.1 Spatial Variables

[t was important to include and consider the impact of space and spatial interactions
in this analysis. Besides issues with autocorrelation among error terms, there are
theoretical considerations as well. Census tracts are devised along particular guidelines,
attempting to create fairly homogenous areas taking demographic and economic
characteristics into consideration. However, tracts are not individual in the same way a
person or household might be; tracts do not have the same standard and clear
demarcations between units. Instead, the guidelines for census tracts, although set for the
particular census, are fluid and determined by local census committees (United States
Census Bureau, 2000) and thus are open to interpretation, movement, and connection.
Interactions between census tracts are inevitable. Similarly, the spatial lag model can
account for externalities or spatial variables not necessarily captured in the regression
model. That becomes especially important for this analysis given factors of urban form and
space, factors that may be difficult to calculate or quantify and arise from similarities in

urban form that can exist between census tracts which occupy similar space. At the same
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time, this level of analysis, while large in comparison to a single household, is small enough

to assess for variations across the urban and institutional space.

The spatial analysis supports these theoretical considerations. The spatial variables
are significant across all spatial lag models. The transportation CO2 model exhibits the
highest correlation between the spatially lagged CO> variable and the dependent CO;
variable across all models with a regression correlation coefficient of approximately 0.83.
Interpreted, as the averaged CO: of all of a census tract’s neighbors increases by 1 metric
tonne (t), that census tract’s COz can be said to increase by .83 t. This is perhaps expected
when transportation COz associated with the household is highly dependent on the length
and time of a commute. This in turn is highly dependent on space, or, the distance from the
household to the job. Patterning associated with this distance is clear when examining a

map of transportation COz (Figure 2).

Although the correlation coefficients for the other spatial lag models are not as
strong, they are also statistically significant and have substantial explanatory power in
their respective regression models. There is spatial clustering evident in the residence CO>
model, with particularly high CO2 per household census tracts clustering around the edges
and in the center of the study area (Figure 2). These clusters could be caused by several
factors, but there are several likely reasons that we can consider. For example, this
clustering could be due to higher levels of larger households than one would associate with
the suburbs and with older housing that one associates with city centers and initial early
developments, both of which are going to increase CO2 per household in those tracts.

Analysis of the Hestia Project database confirms both of these suspicions.
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Total household CO; (Figure 3) is an amalgamation of transportation COz and
residence COz and thus contains reference to patterns visible in both. Clear spatiality in
these models is confirmation that spatial analysis is integral to this type of research.
Examination of households’ CO; emissions without these considerations may result in
inadequate models and overestimate the coefficients of the other variables. However,
limitations of the data used in this study, that is the relatively larger contribution of
transportation emissions over residence emissions to household emissions, may contribute
to an overemphasis of transportation CO2 in the analysis of household CO;, Consequently,
the drivers of total CO2 may be largely driven by transportation CO2. The direction and
relative power of coefficients (betas) within each spatial lag model may lend some support
to reliability to the overall influence of individual socioeconomic factors when considering
that (excluding the spatial variable) income is consistently the biggest predictor of
emissions, followed by average household size, then median income, and finally the race
and ethnicity variables. This holds for all spatial models, so while transportation COz is
quantitatively more significant in the amount of metric tonnes per household it contributes

to COg, the relationships between variables seem consistent.

5.2 Income

Unsurprisingly, income is a significant predictor of CO; across all models. This is
backed by substantial literature, including research that has examined the relationship
between CO; and income controlling for spatiality among variables, albeit at larger scales

than in the present analysis (Burnett & Bergstrom, 2010; Glaeser, 2012; Golley & Meng,
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2012; Min et al,, 2010). The mechanisms surrounding these trends, which exists among all
models, is clear-cut: higher levels of income per household have associated higher levels of
spending. This increased spending power manifests itself through increased CO2,
potentially through increased housing size, number of vehicles, and vehicle travel distance.
Additionally, through a mechanism strongly associated with race, but also cheap land,
upper-class and white flight from inner cities has moved higher income households farther

out to the suburbs increasing commute times (Charles, 2003; Garrett & Taylor, 1999).

Figure 4 illustrates the spatial clustering associated with median income in
Indianapolis. Higher income households are intensely located at the edges of the boundary
of the city. But even controlling for spatiality and other explanatory variables, income is a
significant predictor of household CO;. Taking into account the log transformation of the
median income variables and the resultant regression coefficient for log of median income,
increasing income by 100%, say, for example, from the 50t percentile of census tracts’
household median income to approximately the 95t percentile, would increase total
household CO2 by approximately 0.98t. A 50% increase in income results in an
approximate 0.57t increase in total CO2. The log relationship between CO; and income has
been well established in the literature and implicates a decreasing marginal relationship of
the two variables (Glaeser & Kahn, 2010; Limpert, Stahel, & Abbt, 2001). In other words,
each successive additional dollar in household income has a decreasing impact of CO2, and
thus at lower levels of income, increases in actual income (not percent increases) have

greater impacts on CO; than at larger household incomes.

EA



The explanatory power of median household income is reduced with the addition of
the spatial variable across all models. However, median income in the residence CO; model
is influenced substantially less than its counterparts with reduction in explanatory power
of approximately 15% between models. The total COz and the transportation COz models
see considerable reduction however, approximately 34% and 67% respectively. Despite
this impact, median income remains one of the most important explanatory variables
across the models, and the theoretical and research background that supports this
assertion stands up to the addition of spatial variables, further reinforcing its significance

as a factor in household CO; emissions.

5.3 Race and ethnicity

Due to a variety of institution, cultural, and historical factors, the concentration of
minority households across the urban space is not homogenous. This is well illustrated by
Figure 5 and Figure 6, the percentage of black households and Asian households
respectively. The two race variables vary considerably in their explanatory power across
the models. Both black and Asian households test significantly in the total CO; model,
although Asian households fail to attain significance in the transportation COz model and
are only significant at the 0.1 level in the residence CO2 model, narrowly missing
significance with a p-vale of 0.059. However, the most interesting conclusion from this
analysis, and contrary to the few analyses that have taken household race into
consideration (Estiri, 2013; Min et al,, 2010) is the differing, and consistent, direction of

influence that the respective household race variables have.
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Previous research, although limited, has found a negative association with
minorities and CO>. (Estiri, 2013) first examined race and ethnicity as a singular minority
variable for households across the U.S. using data from the Residential Energy
Consumption Survey created by the U.S. Energy Information Agency. The minority variable
was further broken down into individual race and ethnicities, but a consistent negative
relationship was established between all. (Min et al., 2010) employ a somewhat similar
model as used in this present analysis where several variables representing a portion of
minorities is used. Negative relationships between race and ethnicity and CO; were
uncovered there as well. However, neither paper attempts to draw conclusions or provide
explanations for the direction or strength of influence of minority households on CO>
emissions. The differing results found in this study may provide a clue at the heterogeneity
that exists between cities. The previously mentioned studies employed national databases
while this analysis examined one particular city. The spatial pattern of household race and
ethnicity depends on a range of forces that are place dependent, and, given the uniqueness
of these forces for each city, it is perhaps unsurprising to find the results of this small-scale

study do not follow that of national averages.

In the present analysis, this previously seen negative relationship between race and
ethnicity and household CO; holds for Asian households, which have consistently negative
coefficients across the models. Black households however, have consistently positive
coefficients across all three models, holding all other variables constant, including
spatiality. At the institutional level, these results imply that black households are
consistently and structurally living in places that have associated higher CO2 emissions,

either through residence or transportation associated mechanisms. Although the
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significance for residence COz and black households is tenuous, this relationship could be
due, for example, to black households living in older neighborhoods where heating and
cooling demands may be increased due to inefficiencies in residence structure. It is useful
to point out that both black households and Asian households are overall weak predictors
of CO2, however these results, even controlling for the strong influence of spatiality in these
models, concur with previous research that race is at least a slight factor in household CO>

emissions.

5.4 Other variables

Median age and average household size are utilized in this model as controlling
factors. But, these variables are also strongly linked to important socioeconomic variables.
Indeed, issues of severe multicollinearity required that certain variables, such as number of
children, had to be excluded from the model. The number of children per household is
strongly multicollinear with household size. As families grow and more space is required,
they may potentially seek larger and cheaper housing away from the center of the city, a
dual effect of raising COz by both transportation and residence. In the transportation CO>
and residence CO; spatial lag models, average household size and income have relatively
the same explanatory power. In the total CO; model, income becomes a stronger predictor
than average household size, perhaps suggesting that there is some overlap in predictive
power of average household size between the transportation and residence models,
whereas the predictive power of income across those two models may be picking up on

different patterns.
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Similarly, age of individuals living in a household is a significant influencing factor
across all spatial models in the present analysis. The influence of age on household CO>
emissions is not consistently agreed upon in the literature (Kristrém, 2008). A positive
significant relationship between age and household CO2 emissions was found in national
models, although the influence of this variable was consistently weak (Estiri, 2013; Glaeser,
2012; Golley & Meng, 2012; Min et al., 2010). (Lutzenhiser & Hackett, 1993) found that
among older households there were higher per capita household square footage, ostensibly
associated with children leaving while aging parents stay in the same house. Higher square
footages are associated with higher emissions. This is backed up by (Estiri, 2013) analysis
that found age to be positively associated with per capita emissions and emissions per
square foot. These two studies support the conclusion that age is positively associated with

household CO; emissions.

On the other end, it can be reasonably agreed that at some point age negatively
influences transportation CO2 emissions since the elderly drive much less (Okada, 2012).
This type of age influence, while a plausible mechanism, is more than likely not captured
the particular analysis employed in this paper. The lowest median household age in Marion
County census tracts is around 22, while the oldest is 52. In actuality the model presented
in this study has more potential in capturing the change as young adults begin buying
houses. If this analysis included wealth, or total assets per household, the results might be

slightly different, as housing as a part of wealth would account for some of this activity.
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5.5 Policy implications

Research into the creation of household CO; has increasingly looked past the
technical aspects of households and started looking more closely at the behavioral and
socioeconomic structural factors that contribute to CO2 emissions. This analysis attempted
to analyze the contribution of socioeconomic factors to household CO; emissions within a
particular urban setting, Indianapolis, IN, while specifically considering the influence of
space and the interactions between neighborhoods. The results of this study may not be
generalizable to other urban areas, and indeed, one would expect that depending on the
urban, cultural, and historical structure of the city that the analysis would indeed change
between cities. This restriction was known at the start of this research. If it is difficult to
find consistency and agreement among studies on household variables and COz emissions
at broader scales (Kristrom, 2008), it is fair to assume that variation will be visible at
smaller scales as well. Still, the present study does represent a further step in
understanding the drivers of CO; emissions, even as the generalizability of these exact
results are questionable. Small-scale analyses of household CO; emissions have not been
done so this research offers insight and first steps to gaining a clearer picture of the factors

that drive emissions.

As such, there are interesting and important conclusions to be derived from these
results. First, the continuing importance of particular socioeconomic factors, especially
income, as supported by previous research, but confirmed at the neighborhood scale of a

city in this analysis. Second, the inclusion of spatiality in modeling household CO>
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emissions is unique at this scale. This study demonstrates the need for the integration of

spatiality into the understanding of small-scale CO; emissions.

This analysis focused on household emissions and not per capita emissions because
policy undertaken at the municipal level may be more focused on household level policies,
instead of targeting the individual. The distinction between per capita and household level
analyses is important because the conclusions reached can be dramatically different.
Previous research indicates that household size has a negative relationship with per capita
CO2 emissions (Kristréom, 2008). Analyses of residential energy and CO2 emissions has
shifted to households because these components are shared among all household members
(de Sherbinin et al., 2007). This makes sense instinctually; more people living in one
residence reduces the CO2 emissions per person. Household level policies may include

efficiencies to residence or subsidies for electric cars for example.

This entire analysis is not to say that we should advocate reducing household
incomes, for example, as a deterrence to increased COz emissions. This analysis indicates
how policy could potentially be targeted, or may be best targeted, to reduce emissions. That
is, if income is a significant explanatory variable of total household CO; emissions then
perhaps policy makers should be directing their climate change mitigation policies at this
particular group. Tax cuts for household energy efficiency upgrades is one potential
example. The recent sustainable and environmental urban planning community has
advocated ideas such as walkable cities. By integrating residential and commercial areas

more fluidly, household transportation needs are reduce. By advocating for denser living,
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residence sizes are also substantially reduced. Overall CO; emissions associated with the

household may be reduced (Bulkeley et al., 2010).

Race and ethnicity has a much weaker influence on household CO; emissions than
income, but it is useful to see how policy makers may utilize this type of information. The
clustering of black households in a certain area of Indianapolis may be a prime target for
neighborhood level policies, especially considering the positive association between black
households and COz emissions. Policy directed here may first want to gather additional
information to obtain a clearer understanding of the factors behind this relationship.
Perhaps public transportation needs to be improved in the area to reduce associated
household transportation CO2. Perhaps this area of the city is associated with older homes,
and thus household energy efficiency policies, and associated education outreach of said
policies, may be the best direction for policy makers. The type of information to come out
of an analysis such as presented in this paper should be paired with other types of

knowledge as well.

These policy recommendations are not actual prescriptions to action; instead, they
are examples of how this type of information may be valuable in the policy making process.
In general, there has been a focus on the technical and physical aspects of CO2 emissions
and this has been reflected in policy as well. The results of this analysis add credence to the
recent literature that demonstrates the influence of socioeconomics factors on household
COg2, as well as demonstrating the way in which these socioeconomic variables can be

modeled at small spatial scales, a scale that would be useful to policymakers.
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Chapter 6: Conclusion

6.1 Conclusion

Climate change is perhaps the single most important issue facing the world
community, and the Earth at large, this century. The causes and impacts are global, crossing
international boundaries through trade and the diffuse nature of CO; emissions. Solutions
at the international level have predominately failed to bring about changes in emissions
required to see significant reduction in the expected impacts. However, these failures have
spurred action at lower levels of government. In the U.S. this has meant states and local

jurisdictions are crafting policy that addresses climate change.

This analysis was not performed as a thought experiment over potential local
climate policy. Local jurisdictions are taking actions now, and thus there is a need for
accurate information on the nature of CO; emissions. While the city examined in this study,
Indianapolis, does not currently have comprehensive climate change policy, this is the type
of information that may be utilized by local jurisdictions. Thus, this study was a first
attempt to create this type of analysis, to demonstrate how it could be done, the types of

questions that could be answered, and the potential uses of this data.

Because of the specific and non-randomized nature of this study, the results of the
analysis are not necessarily generalizable to other cities or jurisdictions. However, it is in
the author’s opinion that although there may be changes among the direction and
significance of variables between cities, as physical and social structures will vary, patterns

of spatiality will still exist. Spatiality is a concept that recognizes not just the differences in
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socioeconomic groups across the city space, but also in the biophysical structure as well,
and thus this study demonstrates the need to include that influence in analysis of
household CO2. These findings recognize that particular places in the city may be more
prone to higher or lower CO2 emissions either due to biophysical or socioeconomic factors,

and should be considered in policy decisions.

Furthermore, although it cannot be said for certain that the patterns for race and
ethnicity that were observed for this study will hold for other cities, the concept of housing
discrimination is well documented and has been observed across the country. It is thus not
a stretch to say that race and ethnicity will be a significant factor in other cities as well, and
should be taken into consideration in other models. The other variables analyzed in this

study have much more previous research to back up their inclusion in future work.

Positive and significant relationships between total household CO2 emissions were
observed between two of the variables of main interest to this study as a main components
of socioeconomic status, income and black households. Although a controlling variable,
average household size is also strongly associated with total COz. Income has a long
established positive relationship and is backed by this analysis. Black households revealed
a positive relationship with CO; that is contrary to previous results. Coinciding with
previous research, Asian households have a negative relationship with household CO. This
emphasizes the individual nature of urban space and individual cities, as well as the
individual nature in relationships between different races and emissions. The historical
policies and structure of the city has meant certain populations have clustered in either

areas that are associated with either higher or lower CO2 Overall this study confirmed the
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initial research questions, identifying the importance of spatiality, and the importance of
socioeconomic indicators such as income and race and ethnicity as factors of household

CO2 emissions.

6.2 Interdisciplinary Statement

An issue of climate change’s complexity and breadth requires research not just on
the biophysical causes and impacts, but from the socioeconomic, cultural, and political
causes and impacts as well. The integration of all these disciplines is difficult, but necessary
for accurate climate research and policy. Disciplinary intersection can be seen in the IPCC, a
group of scientists from around the world who use complex biophysical models of the
Earth to predict and understand future impacts, while integrating multiple socioeconomic
and political scenarios into these models. There is tacit recognition of the need for all types

of science and policy within climate change research.

[t is in this spirit that this analysis has attempted to merge CO2 and socioeconomic
data. The importance of geography in this research is not just in ensuring an accurate and
robust regression analysis, but as a tacit acknowledgement that spatial influence exists
within the urban form and is an important variable to consider in policy. The analysis also
borrows from the economic and sociology literature, in the examination of CO; and income
and the relationship between race, ethnicity, housing, and transportation. The data that
was utilized for this analysis was created by downscaling, a complex process that utilized

GIS and energy modeling. Finally, part of the intent of this research to create a method to
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extract relevant information from CO2 emission data that could potentially inform climate
change mitigation policy making on the local level. The integration of all these disciplines

was paramount to the success of this analysis.

6.4 Recommendations

Several opportunities for improvement on this study for future consideration come
immediately to mind. Specifically, as discussed in section 3.4, there are limitations to the
data, limitations that, if managed correctly, could improve the robustness and accuracy of
analysis. Additionally, time-series analyses could help identify trends in changing
socioeconomic and physical structures of cities, considering especially the movement of
populations between and away from neighborhoods. Both these recommendations require
improvements in data gathering or modeling efforts as well in complex analysis, and would,

in general, require larger amounts of data.

[t is also recommended that further studies consider per capita emissions, as well as
household level emissions in the analyses. There is a well-established relationship wherein
the marginal increase in household CO2 emissions decreases with each additional member
of the household. Overall emissions are higher in this case, but per capita emissions are
actually lower. This research controlled for household size, and so the relationships among
all other variables still stand, but it would be of interest to see how per capita CO;
emissions vary over the urban space. While this paper focused solely on households as the

unite of analysis in consideration of household-level focused policy decisions, relevant
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information could be derived from per capita analyses as well, and both should be carried

out side-by-side in future work.
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Appendix A

Moran’s I and Local Moran’s I maps were analyzed in the exploratory spatial analysis stage

of this study. The results are presented below, with each CO: variable exhibiting significant
clustering.

Moran's | on Dependent Variables

Moran's |
Total CO, 0.522 *
Transportation CO, 0.736 *
Residence CO, 0.199 *

Table 4: Moran's I test for spatial dependency
among COz variables. P-values are based on
replications where significant p-values denote
spatial dependency among variables. * denotes
significance at p<.01

Total Household CO;
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Figure 11: Local Moran’s I on total household COz emissions. Significant clustering is
represented by the Moran clustering typology. High-high and low-low designate
clustering of positive spatial autocorrelation, while high-low and low-high designate
spatial outliers or negative spatial autocorrelation. Typology designates the core of the
spatial autocorrelation. Significant replication at p<0.05.
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Figure 12: Local Moran’s I on transportation COz emissions. The legend is as described
in Figure 11.
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Figure 13: Local Moran’s I on residence COz emissions. The legend is as described in
Figure 11.



Appendix B

Local Moran’s [ maps on the residuals of the residence CO; regression models and
transportation CO; regression models are presented below. Both the spatial lag models
exhibit decreased visual and overall clustering, and per their calculated Moran’s I statistic
available in Table 2, their spatial dependency among their residuals decreases over their
respective OLS models.

Residence CO;
OLS Residuals

|:| Not Significant
I High-High
- Low-Low
[ ] Low-High
[ ] High-Low

0 2 4 8 Miles

T T I T N B

Figure 14: Local Moran’s I on residuals of residence COz OLS regression model.
Significant replication at p<0.05. The legend is as described in Figure 11.
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Figure 15: Local Moran’s I on residuals of residence CO: spatial lag regression model.
Significant replication at p<0.05. The legend is as described in Figure 11.
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Figure 16: Local Moran’s I on residuals of transportation COz OLS regression model.
Significant replication at p<0.05. The legend is as described in Figure 11.
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Figure 17: Local Moran’s I on residuals of transportation CO: spatial lag regression
model. Significant replication at p<0.05. The legend is as described in Figure 11.
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Appendix C

The regression scatterplots of the spatial lag of transportation COz and residence CO; are
presented below.

Transportation CO2 Spatial Lag Regression

12 t CO2 per household
2 11 -
S 10 -
g g
g
= 8 -
S 7 -
)
s 6
g5
< 4 -
3 T T T T T T 1
4 5 6 7 8 9 10 11

Predicted CO2 Emissions

Figure 18: The regression plot of transportation COz emissions of the predicted model
by the observed emissions for the spatial lag regression.

Residence CO2 Spatial Lag Regression
6 t CO2 per household
(o]

Actual CO2 Emissions

-1.0
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Figure 19: The regression plot of residence COz emissions of the predicted model by
the observed emissions for the spatial lag regression.



