USING RARITY AND EVOLUTIONARY DISTINCTIVENESS TO PRIORITIZE PROTECTION OF ANGIOSPERMS IN OLYMPIC NATIONAL PARK

Item

Title
Eng USING RARITY AND EVOLUTIONARY DISTINCTIVENESS TO PRIORITIZE PROTECTION OF ANGIOSPERMS IN OLYMPIC NATIONAL PARK
Date
Eng 2021
Creator
Eng Olson, Claire
Identifier
Eng Thesis_MES_2021_OlsonC
extracted text
USING RARITY AND EVOLUTIONARY DISTINCTIVENESS TO PRIORITIZE
PROTECTION OF ANGIOSPERMS IN OLYMPIC NATIONAL PARK

by
Claire N. B. Olson

A Thesis
Submitted in partial fulfillment
of the requirements for the degree
Master of the Environmental Studies
The Evergreen State College
June 2021

©2021 by Claire N.B. Olson. All rights reserved.

This Thesis for the Master of Environmental Studies Degree

by
Claire N.B. Olson

has been approved for
The Evergreen State College
by

John Withey, Ph.D.
Member of the Faculty

June 4, 2021

ABSTRACT

Using Rarity and Evolutionary Distinctiveness to Prioritize Protection of Angiosperms in
Olympic National Park
Claire N.B. Olson

Climate change and the nature of conservation work make it increasingly unlikely that
each species in need of preservation will receive the attention required to prevent its extinction.
Conservationists instead must begin to carefully prioritize the allocation of aid to different
species. One way to conserve the greatest share of biodiversity is to prioritize species that
represent the greatest share of evolutionary history. While this idea has yet to gain much traction
in the Pacific Northwest, studies using phylogenetically informed conservation are growing in
number outside the United States. In Washington State, the diversity and abundance of habitats
across the state has resulted in an overwhelming number of plant species in potential need of
conservation. By providing a baseline set of evolutionary distinctiveness scores for the
angiosperms of Olympic National Park, a former refugium, this study aims to highlight the utility
of phylogenetic information when making conservation decisions between related taxa. Due to
the park’s potential to act as a refugium again in response to warming, it is imperative we
understand the scope of this genetic “ark”. By calculating evolutionary distinctiveness and using
the RED-E (Regional Evolutionary Distinctiveness and Endangerment) metric, this study aims to
1) quantify the value of currently secure species in terms of their contribution to phylogenetic
diversity, 2) examine whether conservation of rare species also conserves a sufficient share of
evolutionary history, and 3) make recommendations for species to be prioritized for conservation
within the park based on their evolutionary distinctiveness. The findings of this study indicate
rarity is a poor proxy for phylogenetic diversity, and that the RED-E metric loses its power when
used below the state scale. The findings also show Olympic National Park is host to a diverse
array of angiosperm lineages, and that the bulk of that evolutionary history lies within the parks’
lowlands. These results provide support for incorporating phylogenetic information into
conservation plans and prioritization decisions within Olympic National Park and the Olympic
Peninsula and highlight the need for taxonomic inventories and regional studies of phylogenetic
diversity.

Table of Contents
Acknowledgements ....................................................................................................................... vii
Introduction ..................................................................................................................................... 1
Literature Review............................................................................................................................ 4
Studies of Floral Communities on the Olympic Peninsula...................................................... 4
Conservation and the Value of Floral Communities ............................................................... 6
Methods......................................................................................................................................... 12
Data Collection and Preparation ............................................................................................ 12
Calculating Evolutionary Distinctiveness (ED) and Regional Endangerment (RE) ............. 13
Results ........................................................................................................................................... 16
ED and RED-E Scores ........................................................................................................... 16
Discussion ..................................................................................................................................... 19
Angiosperm Diversity in Olympic National Park ................................................................. 19
Appendices .................................................................................................................................... 37
Appendix A ................................................................................................................................... 37
Appendix B ................................................................................................................................... 76
Appendix C ................................................................................................................................... 78
Appendix D ................................................................................................................................... 79

iv

List of Figures
Figure 1. Diagram of a model refugium……………………………………………………..……5
Figure 2. Hypothetical phylogeny from Isaac et al. (2007) showing the results and components of
an ED calculation…………………………………………………………………….……9
Figure 3. Histogram of the distribution of ED scores of angiosperms found within Olympic
National Park…………………………………………………………………………….16
Figure 4. Histogram of ED scores for angiosperms found within Olympic National Park…...…17
Figure 5. Histogram of RED-E scores for 40 taxa found within Olympic National Park and the
Special Plants List 2019………………………………………………………………….18
Figure 6. Skunk Cabbage (Lysichiton americanus) at Millersylvania State Park, Olympia WA..20
Figure 7. Species of the genus Carex found within Olympic National Park…………………….22
Figure 8. Carex pauciflora………………………………………………………….……………23
Figure 9. Trientalis arctica and Dodecatheon austrofrigidum………………………………………24

v

List of Tables
Table 1. Conversion of state NatureServe ranks into Regional Endangerment (RE) scores……15

vi

Acknowledgements

Thesis projects are like most research: dull, isolating, tasks punctuated by periods of
crushing tedium. Losing all the small, spontaneous interactions with faculty, classmates, friends,
and loved ones to social distancing exacerbated these traits and threatened to make completing a
thesis during the pandemic a particularly lonely affair. Instead, the upwelling of support and
kindness I received from my family, friends, and reader made things feel (almost) normal.
Without them, this project would have been much, much, more difficult to complete, and might
have not been completed at all.
First I would like to extend my deepest gratitude to my thesis reader, John Withey, for his
patience, support, and advice throughout this process. Though I did not conduct field work, his
faith in my ability to complete this project, and his detailed, considered, answers to my questions
were an essential anchor while I did my research. Instead of flailing in the dark, I flailed with a
flashlight. I would like to thank Barry Wendling, Mike Williams, and Eric DeChaine of the
Pacific Northwest Herbarium at Western Washington University for introducing me to
systematic botany, field work, and the state of botanical research on the Olympic Peninsula. The
depth and breadth of this education provided the skills I needed to conceive of and complete this
thesis project, and without it I would likely have done something very different. I am grateful,
too, to a few individuals whom I have never met: Cam Webb and the creators of Phylocom.
Collectively, their commitment to providing free, high-quality, and easily accessible software,
phylogenies, and user guides allowed me to complete this project at no cost. I would like to
thank my aunt, Thea LaCross, for her willingness to provide editorial feedback on my thesis and
sheltering me when I had nowhere else to go. I am grateful to my friends and family, for their
support and love during this very strange time. I am in Sarah Larson’s debt — I am so glad to
have met her during MES and could not have completed this thesis without her. I would like to
thank my grandparents for pushing me to pursue an education and enabling me to do so despite a
pandemic, homelessness, and many, many, crises. While they did not all survive to see me
complete this work, I know they would have been proud.

vii

Introduction

Operating under the assumption that all species are inherently special (and therefore have
a right to exist in habitat best suited to their needs), conservationists expend enormous amounts
of time, energy, and money in their attempts to arrest species’ freefall into extinction… unless
those species happen to be plants (Leopold, 1949). Though plants comprise nearly 57% of all
species listed under the Endangered Species Act, they receive less than 5% of all recovery
funding from state and federal agencies (Negrón-Ortiz, 2014; U.S. Fish and Wildlife Service,
2013). These figures are concerning, given the positive relationship between increased spending
on recovery plans and their likelihood of success (Miller et al., 2002). While plant species
currently go extinct in the United States at a pace of one species every seven years, climate
change threatens to dramatically increase that rate in coming decades (Antonelli et al., 2020;
Knapp et al., 2020). Due to the intensive nature of conservation programs and the fiscal and
physical reality of the organisms, budgets, and people involved in them, implementing an
appropriate recovery plan for every species that needs one will not be possible (Isaac et al., 2007;
Myers et al., 2000). Instead, conservationists must carefully prioritize the allocation of aid to
species so as to provide the greatest conservation value (Withey et al., 2012; Isaac et al., 2007).

To avoid neglecting species without cultural, agricultural, or ornamental importance, and
counter the human tendency to ignore plants, it is essential that the metric by which species are
prioritized for protection is independent of cultural importance (Balding and Williams, 2016;
Hartmann and Andre, 2013; Isaac et al., 2007). A growing consensus suggests evolutionary
history (or phylogenetic diversity) is this independent metric, as the traits and features species
accrue during their existences comprise an irreplaceable stockpile of the raw materials for
1

speciation, ecosystem services, and other unanticipated benefits of biodiversity (Faith 1992;
Isaac et al., 2007; Veron et al., 2015). These unanticipated benefits or “option values,” will be
increasingly important as the effects of climate change become more pronounced and present
greater challenges to species’ survival (Faith, 1992). Although we cannot know in all cases what
those challenges will be, focusing conservation efforts on preserving the greatest share of
evolutionary history is our best shot at ensuring the raw material for adapting to those obstacles
persists throughout the landscape (Faith, 1992; Veron et al., 2015).

One focus of climate-conscious conservation in specific landscapes has been historical
and potential future climatic refugia (Ashcroft, 2010; Morelli et al., 2016; Sedell et al., 1990).
Refugia are regions where combination of habitats or environmental factors lessen the impacts of
disturbance when combined with the morphological, life history, and behavioral traits of the
organisms that live there (Holderegger and Thiel-Egenter, 2009; Morelli et al., 2016; Sedell et
al., 1990). During the last glacial maximum, refugia acted as a sort of network of arks, harboring
species until the next interglacial period (Holderegger and Thiel-Egenter, 2009; Morelli et al.,
2016).
Due to its status as a refugium during the last glacial maximum, and its’ potential to act
as one again during our current period of warming, the Olympic Peninsula is of particular
interest to scientists looking to understand species’ past responses to warming, the conditions
inside the Olympic refugium during the last glacial maximum, and to conservationists looking to
prevent the extinctions of temperature-sensitive species (Myers et al.., 2000; Shafer et al., 2010;
Wershow and DeChaine, 2018). To help quantify the evolutionary history contained in a former
glacial refugium and identify potential candidates for conservation within the region, I used the

2

fair proportion method to calculate evolutionary distinctiveness scores for the angiosperms of
Olympic National Park (Isaac et al., 2007; Wershow and Dechaine, 2018).

3

Literature Review

Studies of Floral Communities on the Olympic Peninsula
Due to its status as a refugium during the last glacial maximum the Olympic Peninsula
has high rates of endemism and species richness for its latitude (Figure 1; Morelli et al., 2016;
Sedell et al., 1990; Wershow and DeChaine, 2018). Often used as a proxy for conditions inside
the Olympic refugium, and imperiled by the temperature shifts of our current period of warming,
the floral communities of the Olympic highlands receive the greatest share of scientific attention
(Holderegger and Thiel-Egenter, 2009; Wershow and DeChaine, 2018). In response to warming
at the end of the last glacial period, the species that now populate the peninsula’s highlands
retreated with the snowpack to ever higher elevations (Holderegger and Thiel-Egenter, 2009;
Lütz, 2012; Wershow and DeChaine, 2018). While this past makes these species of great interest
to those studying species’ historical responses to warming, the adaptations that allow these taxa
to thrive above the tree line have also made them incredibly sensitive to increases in temperature
(Lütz, 2012; Wershow and DeChaine, 2018). The imminent loss of alpine species to climate
change makes studying these species a particularly urgent priority for scientists working to
estimate species’ future responses to warming, conditions inside the Olympic refugium during
the last glacial maximum, and to conservationists looking to prevent their extinctions
(Holderegger and Thiel-Egenter, 2009; Lyons and Kozak, 2019; Shafer et al., 2010; Wershow
and DeChaine, 2018).

In contrast, the floral communities of the Olympic lowlands have received little scientific
attention since the late 1970s (Bodine and Capaldi, 2016; Consortium of Pacific Northwest
Herbaria, available from: https://pnwherbaria.org/data/search.php; Fonda, 1974). Logging,
4

Figure 1. Diagram of a model refugium. A refugium is a combination of habitats or environmental
factors that lessen the impact of disturbance when combined with the morphological, life history, and
behavioral traits of organisms in a particular area. Adapted from Morelli et al. (2016).

budgetary constraints, the endangered status of the Spotted Owl (Strix occidentalis carina), and
difficult terrain have resulted in a paucity of research on the contemporary distribution,
abundance, or composition of organisms and habitats without commercial importance (Bodine
and Capaldi, 2016; Buckingham, 1995; Fonda, 1974; Hitchcock and Cronquist, 2018). Beyond
museum collections and documents like Flora of the Olympic Peninsula (Buckingham, 1995) or
Flora of the Pacific Northwest (Hitchcock and Cronquist, 2018), research into the composition
or distribution of the flora of the Olympic lowlands published after 1970 focuses almost
exclusively on floodplain management or the habitat requirements of Spotted Owls (Bodine and
Capaldi, 2016; Fonda, 1974). Though understandable, the focus on the needs of human
settlements and those of a small number of animal species means there is a significant gap in the

5

literature as to the composition, distribution, and quality of plant and non-owl animal
communities in the Olympic lowlands.

Conservation and the Value of Floral Communities
In a discipline whose practitioners work tirelessly to preserve life, it may seem
antithetical that so much of conservation involves ending life. Operating on the idea that all
species are inherently special, and therefore have a right to exist in habitat best suited to their
needs (Leopold, 1949), conservationists apply a “your rights end where mine begin” approach to
preservation. Using culls, herbicide, and other efforts to enforce a definition of ‘habitat best
suited to their needs’ as habitat free of threats to the survival or genetic purity of the subject of
the conservation effort, like close relatives (as with Castilleja levisecta, also known as Golden
Paintbrush) or novel competitors from other continents (Beggs et al., 2019; Bodine and Capaldi,
2017; Kaye and Blakeley-Smith, 2008; Kechler and Zedler, 2004).

Combined with the work of early conservationists like John Muir (whose Preservation
Ethic popularized the idea that, as God’s creation, nature has inherent value and so should be
protected from human activities), Aldo Leopold’s notion that all species are special spurred the
creation of many of our country’s habitat protection programs (DeMiller, 1993). Nationally, a
patchwork of lands is protected from development to varying degrees by a network of public and
private organizations. Some lands, like those designated by the Area of Critical Environmental
Concern used by the United States Department of the Interior, Bureau of Land Management’s or
Washington’s Natural Resource Conservation Areas are protected from any kind of development
indefinitely, or allow some degree of low-density infrastructure (DeMiller, 1993; Washington
Department of Natural Resources, 2020). Private lands experience similar protections,

6

administered by organizations like the Center for Natural Lands Management, with or without
some kind of internal designation (Center for Natural Lands Management, 2020; The Nature
Conservancy, 2020). Whatever their status, conservation organizations generally purchase lands
on the assumption that those lands deserve protection because they are high quality examples of
a particular habitat for a particular organism (DeMiller, 1993; Washington Department of
Natural Resources, 2020). In response to the complexity of natural systems and sometimes
dramatic differences in habitat requirements between species, conservationists have struggled to
create a uniform means of quantifying habitat quality (McCune and Grace, 2002). Plants’
relatively static nature and their often-reciprocal relationship with animals has led to ‘habitat
quality’ being largely defined by how well the ecosystem services offered by a habitat’s
vegetative community meets the needs of the humans or animals that use it (McCune and Grace,
2002; Swink and Wilhelm, 1979). Over time, the linkage between plants, animals, and
environmental conditions led to the development of three primary metrics for quantifying the
value of floral communities: 1) number and type of ecosystem services and the degree to which
they are provisioned, 2) nativity and endemism, and 3) species richness in terms of native species
(Isaac et al., 2007; McCune and Grace, 2007; Swink and Wilhelm, 1979).

Ecosystem services and the ratio of native taxa to non-native taxa first came to popularity
in the late 1970s and resulted in the development of the Floral Quality Analysis or FQA (Swink
and Wilhelm, 1979). By combining a floral inventory and an index score (the Floral Quality
Index, or FQI) based on the characteristics of an ecosystem’s idealized plant community, the
FQA allowed for quick site comparisons, spurring adoption as a national standard by the 1980s
(Rocchio and Crawford, 2013; Swink and Wilhelm, 1979). Due to national variation in habitat
types, and the FQA’s core assumption (that each plant species has evolved a unique degree of
7

tolerance to disturbance, environmental distress, or reliance on a specific degree of habitat
integrity), each state has a unique FQI calculator (Rocchio and Crawford, 2013; Swink and
Wilhelm, 1979). However, because all FQI scores (also called C- values for “Coefficient of
Conservatism”) are calculated the same way, index scores can be compared to each other
regardless of habitat type or location (Rocchio and Crawford, 2013; Swink and Wilhelm, 1979).

The FQA can consume large amounts of time and resources; as a result, organizations
sometimes use straight measures of species richness or nativity to estimate habitat quality (Swink
and Wilhelm, 1979). This practice relies on the assumption that high quality habitats (generally
defined as habitats that provide full ecosystem services and intact plant and animal communities)
have greater species diversity, or richness, than low quality habitat (Swink and Wilhelm, 1979).
Localities boasting both a diverse community of species and a high rate of endemism, often
called ‘hotspots’, have long been prioritized for conservation under this assumption (Cadotte and
Davies, 2010). However, as genetic analysis and genome sequencing have become more and
more affordable, and extinction rates tick ever higher, some conservationists are calling for a
shift toward prioritizing instead regions with high rates of phylogenetic diversity instead, arguing
that prioritizing evolutionary history captures a greater share of biodiversity than prioritizing
regions with an abundance of species but having overall a low diversity of evolutionary lineages
(Buchholz, Hanning, and Schirmel, 2013; Cadotte and Davies, 2010; Faith, 1992; Hansen et al.,
2008; Isaac et al., 2007).

Most commonly, phylogenetic information is incorporated into studies through the
EDGE (evolutionary distinctiveness and global endangerment) approach, which quantifies
species’ unrelatedness, or evolutionary distinctiveness (ED) and then weights that number by the

8

species’ global risk of extinction (GE), the species’ status on the IUCN Red list (Isaac et al.,
2007; IUCN, 2017). Prior to the development of ED, evolutionary history was primarily
quantified through Faith’s (1992) PD (phylogenetic diversity), a summed measure of the
evolutionary history contained by groups of species. By dividing PD across all members of a
group, Isaac et al. (2007) created a value that allowed for the examination and comparison of
individual species’ contribution to evolutionary history (Isaac et al., 2007). In the years since its
derivation, ED has quickly become the most common means of measuring evolutionary history
(Figure 2; Buchholz, Hanning, and Schirmel, 2013; Hansen et al., 2008; Isaac et al., 2007; Isaac
et al., 2012).

Figure 2. Hypothetical phylogeny from Isaac et al. (2007) showing the results and components of an ED calculation.
A-G represent species, numbers below the branches represent branch length, numbers above the branches represent
number of descendants, and ED scores for each species are listed to the right. Branch length is represented in
millions of years before the present (MYBP). F and G have the highest ED scores and so, under this method, would
be prioritized for conservation has the most evolutionarily distinct species within their group.

9

Thanks to the increasing affordability of genetic sequencing, the advent of the timecalibrated phylogenies necessary for accurate ED calculations has enabled the application of
EDGE to a wide variety of taxonomic groups. Corals (Curnick et al., 2015; Huang, Davies, and
Gittleman, 2012), Chondrichthyes (cartilaginous fishes; Stein et al., 2018), amphibians (Isaac et
al., 2012), reptiles (Gumbs et al., 2018), and birds (Jetz et al., 2014) all have been provided with
a comprehensive set of EDGE rankings. Notably, plants are absent from this growing body of
work, despite increasingly accurate, time-calibrated phylogenies for angiosperms (Gastaur and
Meira-Neto, 2015; The Angiosperm Phylogeny Group, 2016; Zanne et al., 2014).

I was unable to find an explicit rationale for the lack of interest in EDGE among the
botanical community, but suspect a lack of familiarity with the calculation, and the
overwhelming variety of plant taxa are likely causes. Prioritizing taxa based on their
phylogenetic contribution to biodiversity is, after all, a fairly sharp ideological departure from
the dominant plant conservation paradigms of 1) applying equal resources to every species, and
2) subscribing to the Leopoldian idea that all species are inherently special, and therefore
deserving of habitat that best meets their needs (Leopold, 1949; DeMiller, 1993; Dunwiddie et
al. 2014). Sometimes, though, this line of thinking can unintentionally mimic conservation
efforts underpinned by phylogenetic information. For example, local efforts to restore the
prairies of the southern Puget Sound are stymied by a lack of pre-colonization reference sites,
and so have little data to inform the composition of the plantings at their restoration sites
(Dunwiddie et al., 2014). To overcome this obstacle, researchers turned to historical occurrence
data and museum collections to model reference communities to guide their plantings, hoping
maximizing the species diversity present throughout replanted prairies will give them the best
odds of finding a community composition that is adaptable to climate change (Dunwiddie et al.,
10

2014; Reed et al., 2019; Mauger et al, 2015). Conducting some sort of analysis, such as EDGE,
ED, or PD, for the taxa in their model community of Puget Sound prairie plants would have
allowed this group to maximize the number of ‘option values’ for adaptation present in their
master list of species by identifying the species that provided the greatest contribution to
phylogenetic diversity within their groups (Faith, 1993; Isaac et al., 2007).

Incorporating evolutionary distinctiveness and other metrics of evolutionary history into
conservation programs like the one that exists for Washington’s prairies will help
conservationists build floral communities with the greatest chance of resilience to climate
change. Where single species, rather than whole ecosystems, are at risk of extinction, prioritizing
taxa based on their phylogenetic contribution to biodiversity will allow conservationists to
perform ecological triage and do the most good with what money, manpower, and political will
exists.

11

Methods
Data Collection and Preparation
I combined an existing Olympic National Park species list (available from:
https://irma.nps.gov/Portal) with the results of a 2005 inventory of the park's coastal wetlands
(Acker and Olson, 2009) and data from occurrence records in the Consortium of Pacific
Northwest Herbaria database (available from: https://pnwherbaria.org/data/search.php ) to create
a comprehensive list of vascular plants within the park (Appendix A). Because calculating
evolutionary distinctiveness requires time-calibrated, well-supported phylogenies for accuracy, I
removed bryophytes, pteridophytes, and gymnosperms from my list because their phylogenetic
relationships are poorly understood relative to angiosperms (APG IV; Cornwell et al., 2014;
Gastaur and Meira-Neto, 2013; Isaac et al., 2007; Shaw, Szovenyi, and Shaw, 2011; Webb and
Donoghue, 2005; Zanne et al., 2014). I also removed all non-native taxa from my final species
list because they are not generally subject to positive attention from conservation programs.

Phylogeny Selection and Preparation

To generate the most accurate ED scores possible, I chose to use a time-calibrated
phylogeny created to examine the evolution of woody tissue in northern hemisphere angiosperms
(Zanne et al., 2014). By using mutation rates to determine divergence times, the Zanne et al.
(2014) tree provides a more accurate estimate of the evolutionary time, or branch length between
taxa, than phylogenies reliant on a secondary branch length adjustment function (Phylocom's
BLADJ function is a popular option) to fit the tree to a series of nodes with pre-determined ages
(Webb, Ackerly, and Kembel, 2008; Wikstrom, Savolainen, and Chase, 2001). Because Zanne et
12

al. (2014) chose to include nearly 22,000 taxa in their phylogeny, using this tree maximized the
likelihood that species within my study area would be included within the tree and therefore
available for the ED calculation (2014).

To avoid erroneously dropping tips due to differences in nomenclature (this phylogeny
was built prior to the release of APG IV), I cross-referenced each name in my species list with
those used by Zanne et al. (The Plant List, available from: http://www.theplantlist.org and the
Angiosperm Phylogeny Website, available from: http://www.mobot.org/MOBOT/research/
Apweb/) before proceeding to trim their tree to just the taxa within my study area (Gastaur and
Meira-Neto, 2015; The Angiosperm Phylogeny Group, 2016; Web and Donoghue, 2005; Zanne
et al., 2014). After updating the names of each taxon in my species list, I used the web-based
version of Phylocom (the Phylomatic, available from: http://phylodiversity.net/phylomatic/) to
access the super tree and drop all species not found within Olympic National Park (Webb and
Donoghue, 2005; Zanne et al., 2014).

Calculating Evolutionary Distinctiveness (ED) and Regional Endangerment (RE)
I calculated ED scores for each species with the R package ‘picante’ and the fair
proportion ED calculation (Appendix A; Isaac et al., 2007; Kembel et al., 2010; R Core Team,
2021; Webb, Ackerly, and Kembel, 2008). I chose the fair proportion calculation over equal
splits and other alternatives because this approach ensures each unit of evolutionary time (1 MY)
is weighted equally (Gastaur and Meira-Neto, 2014; Isaac et al, 2007; Redding and Mooers,
2006; Webb, Ackerly, and Kembel, 2008). For those taxa considered species of concern by the
Washington Department of Natural Resources, Natural Heritage Program (2019), I took the
13

additional step of calculating Regional Evolutionary Distinctiveness-Endangerment (RED-E)
scores by creating a function in R to weight their ED scores by their Washington state
Natureserve threat rank (Appendix B; Brantner, 2015). I used the following equation to calculate
RED-E in R (adapted from the EDGE equation first published by Isaac et al., 2007 by Brantner,
2015):

RED-E = ln (1+ED) + RE * ln(2)

EDGE = ln (1+ED) + GE * ln(2)

Natureserve is a national science advisory charity that works with states and governments
(Washington’s rankings were developed in partnership with the Natural Heritage Program) to
create a system for ranking taxa by their risk of extirpation within their borders (FaberLangendoen et al., 2012; Washington Department of Natural Resources, 2019). Under this
system, species with verified occurrence records are ranked from secure (S5) to critically
imperiled (S1), while species presumed extirpated, known only from historical records, or those
that otherwise cannot be ranked receive designations such as X, H, and U respectively (FaberLangendoen et al., 2012; Washington Department of Natural Resources, 2019). Taxa with an
unresolved conservation status receive an intermediate ranking (S1S2, for example) or a question
mark (S3?) if their status is less uncertain (Faber-Langendoen et al., 2012; Washington
Department of Natural Resources, 2019). Following Thompson (2020) I converted each state
threat ranking into an integer (a Regional Endangerment Score) for use in the RED-E calculation
(see Table 1). Under this method, RE scores range from 0 (S5) to 4(S1), and intermediate values
are represented by taking the average of their two ranks (S1S2 becomes 1.5; Thompson, 2020).
Because question marks represent less uncertainty than intermediate rankings, I chose to
14

disregard question marks entirely and treat those rankings as if the mark was not present (For
example, S1? and S1 would both receive an RE score of 4).

Table 1. Conversion of state NatureServe ranks into Regional Endangerment (RE) scores. No
species with a threat ranking below S3 existed in this dataset, though one taxon (Arenaria
paludicola) is presumed extirpated and therefore no RED-E score was calculated for it. Adapted
from Thompson (2020).
Threat Level
Critically Imperiled
Imperiled
Vulnerable
Apparently Secure
Secure

NatureServe Ranking
S1
S1S2
S2
S2S3
S3
S3S4
S4
S4S5
S5

15

RE Score
4
3.5
3
2.5
2
1.5
1
0.5
0

Results

ED and RED-E Scores
Olympic National Park is home to 32 orders, 78 families, 363 genera, and 872 species of
flowering plants (Appendix A; Figure 4). Of these, ED scores were calculated for 871 species
and ranged from 2.91 MY (Carex phaeocephala and Carex praticola) to 180.93 MY (Asarum
caudatum) with a median value of 32.14 MY, a standard deviation of 25.24 MY and a geometric
mean of 25.99 MY (Figure 5). No score was generated for Myriophyllum quitense because it was
not included (by this name or any synonyms) in the Zanne et al. (2014) phylogeny.

Figure 3. The angiosperms of Olympic National Park. Species are not distributed evenly across the branches of the
tree of life. Phylogeny constructed using a tree originally built by Zanne et al. (2014).

16

Figure 4. Histogram of the distribution of ED scores of angiosperms (n = 871) found within Olympic National Park.
A species list with calculated ED scores is provided in Appendix A.

RED-E scores were calculated for the 40 taxa found within the park and on the Special
Plants List 2019 (Washington Department of Natural Resources, 2019). Scores ranged from 3.79
(Carex obtusata) to 7.45 (Arcteranthis cooleyae) with a median value of 5.9, a standard
deviation of 0.87 and a geometric mean of 5.67 (Appendix B). The RED-E rankings were
relatively homogenous across all 40 species of concern, which was likely the result of most of
those species being fairly high priority (S2 rank) taxa (Washington Department of Natural
Resources, 2019).

17

Figure 5. Histogram of RED-E scores for n = 40 taxa found within Olympic National Park and the Special Plants
List 2019 (Washington Department of Natural Resources, 2019). A species list with calculated RED-E scores, and
ED scores, is provided in Appendix B.

18

Discussion

Angiosperm Diversity in Olympic National Park
Given its proximity to a former glacial refugium, it is not particularly surprising that
Olympic National Park is home to such a diverse array of angiosperm lineages (Wershow and
DeChaine, 2018; Appendix A). While the ages and distribution of species across genera,
families, and orders is, overall, consistent with what’s known about angiosperm radiations from
the fossil record, calculating ED revealed a few surprises (Cantino et al., 2007; Linkies et al.,
2010). First, Asarum caudatum, a somewhat uncommon component of Washington’s lowland
forests, diverged from its closest relative on the peninsula 180.93 MYA, during the Jurassic
period and relatively soon after angiosperms first diverged from gymnosperms (Walker et al.,
2013; Cantino et al., 2007; Appendix A). Other species familiar from roadsides and parks, like
Skunk Cabbage (Lysichiton americanus, ED = 131.11 MY), water-lilies (Nuphar polysepala, ED
= 153.23), and nearly 100 other species within the park have ED scores above 65 MYA, when
the K-Pg extinction event wiped out nearly 57% of North American terrestrial plants (Appendix
A; Labandeira, Johnson, and Wilf, 2002). Nearly half of the Park’s angiosperms, 408 species,
arose before or during the Paleocene-Eocene Thermal Maximum (56 MYA to 33.9 MYA), the
warmest period in earth’s history (Culver and Rawson, 2000; Labandeira, Johnson, and Wilf,
2002; Walker et al., 2013). While this history is no guarantee of survival during our current
period of warming, it’s encouraging to think that a majority of the Park’s angiosperms have
already survived some of the worst climate change has to offer and could do so again.

19

Figure 6. Skunk Cabbage (Lysichiton americanus) at Millersylvania State Park, Olympia WA. Common weeds like
Skunk Cabbage provide critical winter forage for animals like Deer. Image by Claire Olson.

With the exception of Skunk Cabbage, many of these species are not flashy, notable, or
particularly valuable to humans. Who would have ever thought Duck Weed (Lemna minor, ED =
103.17) or Oregon Grape (Berberis nervosa, ED = 119.42), to be irreplaceable examples of
biodiversity? Perhaps counterintuitively, roadside weeds, greenbelt oddities, and smelly spring
flowers contain the lion’s share of evolutionary history.

RED-E, ED, and the Special Plants List

Boring vegetation is the future of speciation, and we should do more to keep tabs on it.
Of the species in my dataset, just 40 were listed by the Washington Natural Heritage Program as
species of concern (taxa prioritized for monitoring) (Washington Department of Natural
Resources, 2019). Of the 40 listed species, just 2 had ED scores within the top 50 highest ED
20

scores (Appendix A; Washington Department of Natural Resources, 2019). Overall, the species
prioritized for monitoring by the Special Plants List that occur within Olympic National Park are
no more or less distinctive than other species within the park (average ED score of 38.59 MY),
with a tendency to come from large families (Appendix B; Appendix A).

The Cyperaceae (sedges), for example, is particularly well represented in this list, with
five of the 23 members of Carex up for monitoring: C. anthoxanthea (4.72 MY), C. circinnata
(20.22 MY), C. obtusata (4.53 MY), C. pauciflora (4.66 MY), and C. stylosa (20.21 MY).
Sedges are, on the whole, an old lineage of angiosperms, arising around 83 MYA (Cantino et al.,
2007). However, unlike some of the Park’s other old lineages (Araceae, 130 MY), the
Cyperaceae have experienced some relatively recent radiations, with many members (especially
Carex) diverging between 6 and 2 MYA (Figure 7, Appendix A).

From the perspective of preserving phylogenetic diversity, the Special Plants List does
not serve the Cyperaceae particularly well, instead prioritizing visually-distinctive sedges
(members of this family are notoriously difficult to identify) like C. pauciflora (Figure 8) and
neglecting the other genera of sedges (Dulichium, Eleocharis, Eriophorum, Rhynchospora,
Schoenoplectus, and Scirpus) entirely. From the perspective of prioritizing species based on their
contribution to evolutionary history, the two species within the genus Schoenoplectus (each with
an ED score of 28.53 MY) would receive priority, followed by older members of Carex such as
C. stylosa, and single-species genera like Rhynchospora (ED score of 16.83 MY) that diverged
around the same time as some Carex, but represent a distinct branch of the sedge family tree. For
the Cyperaceae, rarity alone is a poor proxy for phylogenetic diversity

21

Figure 7. Species of the genus Carex found within Olympic National Park. Species within the polytomy diverged
around 4.5 million years ago, and are indistinct from a phylogenetic perspective. Phylogeny adapted from a super
tree generated by Zanne et al (2014).

Many of the other families of the special plants list fare the same way upon examination,
containing one visually-distinct listed member that has a relatively low ED score, but then also
contains numerous older, more phylogenetically important members that are less readily
noticeable and hence left without a ranking (Washington Department of Natural Heritage, 2019;
Appendix A; Appendix B). For example, a member of the Primulaceae, Dodecatheon

22

austrofrigidum (RED-E score of 6.39, ED score of 36.37 MY) is prioritized by the Special Plants
List but diverged at roughly the same time (36.37 MY) as the other four species of Dodecatheon
found within the park (Appendix A). Other genera of the Primulaceae represent much more
distinctive lineages, such as Trientalis (58 MY) or Androsace (45 MY), but are much less
visually striking or distinctive (Figure 9).

Figure 8. Carex pauciflora is not distinctive or valuable from a
phylogenetic perspective but is one of the few sedges that can be easily
identified without training. Image © 2021 Donald Cameron.

23

Figure 9. Trientalis arctica (Left, © Michael Kesl), which is much less conspicuous than Dodecatheon
austrofrigidum (Right, © Wilbur Bluhm), but is far more important phylogenetically.

Unfortunately, a species’ absence from the Special Plants List does not mean it is not
equally at risk of extirpation, especially if you take climate change into consideration. A lack of
contemporary range and distribution information for many species (even a quick look at records
in the database compiled by the Consortium of Pacific Northwest Herbaria will show a steep
decline in collections after 1970) means range and abundance estimates are based off decadesold information that may no longer reflect a species’ reality. Without a reference point, it will be
nearly impossible to identify declines in species’ before (and sometimes even when) they
become at risk of extirpation. Without knowing species’ starting point, we cannot quantify the
impacts of climate change. Shifting monitoring priorities to those species with a high degree of
phylogenetic importance, rather than solely monitoring those with small populations, will go the
farthest toward preventing a landscape-scale loss of biodiversity, especially when those efforts
are focused in potential refugia like Olympic National Park.

As the progenitors of climate change, we have a moral obligation to do our best to ensure
that most species have the best shot at persisting through the end of the century, even if they are

24

unattractive, ‘useless’, or have a particularly unpleasant smell. We have a duty to go and look for
species that are not attractive, that are difficult to identify, and that occur in inconvenient places,
even if it is not particularly cheap to do so, because not looking means risking the disappearance
of millions of years of evolutionary history without ever even realizing what could be lost.

25

Conclusion

Although immediate conservation action is necessary to counteract this century’s everaccelerating rates of extinction, the number of species in need of preservation is all but
guaranteed to overwhelm the ability of agencies and organizations to provide aid. Therefore,
conservation programs must work to prioritize the allocation of funding to those species who
represent the most urgent need and the greatest share of evolutionary history. However,
insufficient data on the relative endangerment of plant species at the regional and local levels
impedes attempts to determine which taxa are in fact secure, hampering conservationists’ ability
to make informed decisions. Climate change and urbanization mean we can no longer assume
taxa are secure, even when decades-old records indicate a sufficient range and population size.
Without clear, contemporary range and abundance information, we cannot know species’ threat
status. Equally unreasonable is the expectation that up-to-date range and abundance information
for all species exists as well as the expectation that vulnerable species will all be provided with
sufficient conservation efforts. Centering monitoring efforts on phylogenetically important
species makes relevant data collection and support much more feasible. This study provides a
basis for prioritizing species for monitoring (and, potentially, conservation) built on their
contribution to the phylogenetic diversity of Olympic National Park and the Olympic Peninsula,
a study that highlights the diversity of lineages found within the park, and both the need for and
value of increased assessments of the threat to and phylogenetic relationships among plants
throughout Washington State.

26

References
Acker, S.A., Olson, R.W. (2009). Vascular Plant Inventory of Coastal Bogs, Wetlands, and
Lakeshores, Olympic National Park (2005): Natural Resource Technical Report
NPS/NCCN/NRTR-2009/174. Retrieved from: http://olympicnationalparkvisitor.info/wpcontent/uploads/2013/02Plant_Inventory.pdf on 3/4/2021.

Antonelli, A., Fry, C., Smith, R., Simmonds, M., Kersey, P., Pritchard, H., Abbo, M., Acedo, C.,
Adams, J., Ainsworth, A., Allkin, B., Annecke, W., Bachman, S., Bacon, K., Bárrios, S.,
Barstow, C., Battison, A., Bell, E., Bensusan, K., Zhang, B. (2020). State of the World's
Plants and Fungi 2020. Royal Botanic Gardens, Kew. doi: 10.34885/172.

Ashcroft, M.B. (2010). Identifying refugia from climate change. Journal of Biogeography, 37:
1407-1413.

Balding, M., Williams, K.J.H. (2016). Plant blindness and the implications for plant
conservation. Conservation Biology 30(6): 1192-1199. doi:10.1111/cobi.12738.

Beggs, R., Pierson, J., Tulloch, A., Blanchard, W., Westgate, M., Lindenmayer, D. (2019). An
empirical test of the mechanistic underpinnings of interference competition. Oikos,
129(1), 93-105.

Bodine, E.N. and Capaldi, A. (2016). Can Culling Barred Owls Save a Declining Northern
Spotted Owl Population? Natural Resource Modeling, 30(3). DOI: 10.111/nrm.12131

27

Brantner, E.K. (2015). Regional Evolutionary Distinctiveness and Endangerment as a means of
Prioritizing Protection of Endangered Species. M.S. Thesis, Florida International
University.

Buchholz, S., Hanning, K., Schirmel, J. (2013). Losing uniqueness – shifts in carabid species
composition during dry grassland and heathland succession. Animal Conservation, 16(6),
661-670.

Curnick, D.J., Head, C.E.I., Huang, D., Crabb, M., Gollock, B.W., Hoeksema, K., Johnson, G.,
et al. (2015). Setting Evolutionary-Based Conservation Priorities for a Phylogenetically
Data-Poor Taxonomic Group (Scleractinia). Animal Conservation, 18(4): 303-12.
doi:10.1111/acv.12185

Consortium of Pacific Northwest Herbaria. Specimen Database. [Vascular Plant Records found
within Olympic National Park]. Available from: https://pnwherbaria.org /data/search.php

Cadotte, M.W., Davies, J.T. (2010). Rarest of the rare: advances in combining
evolutionary distinctiveness and scarcity to inform conservation at biogeographical
scales. Diversity & Distributions, 16(3), 376-385.

Center for Natural Lands Management. (2020). About Center for Natural Lands Management.
Retrieved from: https://www.cnlm.org/about-cnlm/mission/

28

Cornwell, W.K. et al. (2014). Functional distinctiveness of major plant lineages. Journal of
Ecology, 102(2): 345-356. doi: 10.1111/1365-2745.12208

DeMiller, R. (1993). History of the Environmental Movement and Environmental
Conservation, Environmental Conservation, 20(2), 176-177.

Faber-Langendoen, D., Nichols, J., Master, L., Snow, K., Tomaino, A., Bittman, R.,
Hammerson, G. (2012). “Natureserve Conservation Status Assessment Methodology
for Assigning Ranks”. NatureServe, June.

Faith, D.P. (1992). Conservation Evaluation and Phylogenetic Diversity.
Biological Conservation, 61(1): 1-10. doi:10.1016/0006-3207(92)91201-3.

Gastaur, M., Meira-Neto, J.A.A. (2013). Avoiding inaccuracies in tree calibration
and phylogenetic community analysis using Phylocom 4.2. Ecological Informatics (15):
85-90.

Gumbs, R., Gray, C.L., Wearn, O.R., Owen, N.R. (2018). Tetrapods on the EDGE: Overcoming
Data Limitations to Identify Phylogenetic Conservation Priorities. PLOS ONE, 13(4):
e0194680. doi:10.1371/journal.pone.0194680.

Hansen, M.M., Fraser, D.J., Als, T.D., Mensberg, K.D. (2008). Reproductive isolation,

29

evolutionary distinctiveness and setting conservation priorities: the case of European
lake whitefish and the endangered North Sea houting (Coregonus spp.). BMC
Evolutionary Biology, 8(1), 137.

Hartmann, K., André, J. (2013). Should Evolutionary History Guide Conservation? Biodiversity
& Conservation, 22(2): 449-458. doi:10.1007/s10531-012-0422-z.

Holderegger, R., Thiel-Egenter, C. (2009). A discussion of different types of glacial refugia used
in mountain biogeography and phylogeography. Journal of Biogeography, 36: 476-480.

Huang, S.T., Davies, J., Gittleman, J.L. (2012). How Global Exinctions Impact Regional
Biodiversity in Mammals. Biology Letters, 8(2): 222-25. doi:10.1098/rsbl.2011.0752

Isaac, N.J.B., Turvey, S.T., Collen, B., Waterman, C., Baillie, J.E.M. (2007). Mammals on the
EDGE: conservation priorities based on threat and phylogeny. PLoS ONE, 2(296).

Isaac, N.J.B., Redding, D.W., Meredith, H.M., Safi, K. (2012). Phylogenetically-Informed
Priorities for Amphibian Conservation. PloS ONE, 7(8): 1-8.

IUCN. (2017). The IUCN Red List of Threatened Species: Strategic Plan 2017-2020. IUCN Red
List Committee. https://nc.iucnredlist.org/redlist/resources/files/1531922193-49
_Red_List_Strategic_Plan_2017_2020_final.pdf.

Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., Mooers, A.O. (2012). The Global Biodiversity
30

of Birds in Space and Time. Nature 491(2454): 4444-48. doi:10.1038/nature11631

Kaye, T.N and Blakeley-Smith, M. for the Washington Department of Natural Resources.
(2008). An Evaluation of the Potential for Hybridization Between Castilleja levisecta and
C. hispida. Retrieved from:
https://www.dnr.wa.gov/publications/amp_nh_cale_hybrid.pdf

Kechler, S.M. and Zedler, J.B. (2004). Multiple Disturbances Accelerate Invasion of Reed
Canary Grass (Phalaris arundinacea) in a Mesocosm Study. Oecologia, 138(3), 455-64.

Kembel, S., Cowan, P., Helmus, M., Cornwell, W., Morlon, H., Ackerly, D., Blomberg, S.,
Webb, C. (2010). “Picante: R tools for integrating phylogenies and ecology.”
Bioinformatics, 26: 1463–1464.

Knapp, W.M., Frances, A., Noss, R., Naczi, R.F.C., Weakley, A., Gann, G.D., Baldwin, B.G.,
Miller, J., McIntyre, P., Mishler, B.D., Moore, G., Olmstead, R.G., Strong, A.,
Kennedy, K., Heidel, B., Gluesenkamp, D. (2020). Vascular plant extinction in the
continental United States and Canada. Conservation Biology, 35(1): 360-368. doi:
10.1111/cobi.13621

Labandeira, C.C., Johnson, K.R., Wilf, P. (2002). Impact of the terminal Cretaceous event on
plant-insect associations. Proceedings of the National Academy of Sciences of the United
States of America, 99(4): 2061-6.

31

Leopold, Aldo. (1949). A Sand County Almanac, and Sketches Here and There. New York:
Oxford University Press.

Linkies, A., Graeber, K., Knight, C., Leubner-Metzger, G. (2010). The evolution of seeds. New
Phytologist, 186: 817-831.

Lyons, M.P., Kozak, K.H. (2019). Vanishing islands in the sky? A comparison of correlationand mechanism-based forecasts of range dynamics for montane salamanders under
climate change. Ecography, 43: 481-493.

McCune, B. P, and J. Grace with a contribution from D. Urban. 2002. Analysis of Ecological
Communities. MJM Software, Gleneden Beach, Oregon.

Mauger, G.S., J.H. Casola, H.A. Morgan, R.L. Strauch, B. Jones, B. Curry, T.M. Busch Isaksen,
L. Whitely Binder, M.B. Krosby, and A.K. Snover. 2015. State of Knowledge: Climate
Change in Puget Sound. Report prepared for the Puget Sound Partnership and the
National Oceanic and Atmospheric Administration. Climate Impacts Group,
University of Washington, Seattle. doi:10.7915/CIG93777D

Morelli, T.L., Daly, C., Dobrowski, S.Z., Dulen, D.M., Ebersole, J.L., Jackson, S.T., Lundquist,
J.D., Millar, C.I., Maher, S.P., Monahan, W.B., Nydick, K.R., Redmond, K.T., Sawyer,
S.C., Stock, S., Beissinger, S.R. (2016). Managing Climate Change Refugia for Climate
Adaptation. PLOS ONE, 12(1): e0169725.
doi:https://doi.org/10.1371/journal.pone.0169725
32

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J. (2000).
Biodiversity Hotspots for Conservation Priorities. Nature 403(6772): 853-58.
doi:10.1038/35002501.

Negrón-Ortiz, V. (2014). Pattern of expenditures for plant conservation under the Endangered
Species Act. Biological Conservation, (171): 36-43. doi:10.1016/j.biocon.2014.01.018

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/

Reed, P.B., Pfeifer-Meister, L.E., Roy, B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., Boulay,
M.C., Hamman, S.T., Bridgham, S.D. (2019). Prairie plant phenology driven more by
temperature than moisture in climate manipulations across a latitudinal gradient in the
Pacific Northwest, USA.

Redding, D.W. and Mooers, A.O. (2006). Incorporating evolutionary measures into
conservation prioritisation. Conservation Biology, 20: 1670-1678.

Rocchio, F.J., and R.C. Crawford. (2013). Floristic Quality Assessment for Washington
Vegetation. Washington Department of Natural Resources, Olympia, WA, USA.

Shafer, A.B.A., Cullingham, C.I., Cóté, S.D., Coltman, D.W. (2010). Of glaciers and refugia: a
decade of study sheds new light on the phylogeography of northwestern North America.
33

Molecular Ecology, 19: 4589-4621.

Seddell, J.R., Reeves, G.H., Hauer, R.F., Stanford, J.A., Hawkins, C.P. (1990). Role of Refugia
in Recovery from Disturbances: Modern Fragmented and Disconnected River Systems.
Environmental Management, 14(5): 711-724. doi:10.1007/BF02394720

Stein, R. William, Christopher G. Mull, Tyler S. Kuhn, Neil C. Aschliman, Lindsay N. K.
Davidson, Jeffrey B. Joy, Gordon J. Smith, Nicholas K. Dulvy, and Arne O. Mooers.
(2018). Global Priorities for Conserving the Evolutionary History of Sharks, Rays and
Chimaeras. Nature Ecology & Evolution 2 (2): 288–98. https://doi.org/10.1038
/s41559-017-0448-4.

Shaw, A.J., Szovenyi, P., Shaw, B. (2011). Bryophyte diversity and evolution: Windows into the
early evolution of land plants. American Journal of Botany, 98(3): 352-369.

Swink, F. and G. S. Wilhelm. (1979). Plants of the Chicago Region, 3rd ed. Morton Arboretum,
Lisle, IL. 922 pp.

The Angiosperm Phylogeny Group. Byng, J., Chase, M., Christenhuuz, M., Fay, M., Judd, W.,
Mabberly, D., Sennikov, A., Soltis, D., Soltis, P., Stevens, P. (2016). An update of the
Angiosperm Phylogeny Group classification for the orders and families of flowering
plants: APG IV. Botanical Journal of the Linnean Society, 181: 1-20. doi:
10.1111/boj.12385.

34

United States Department of the Interior, National Park Service, Natural Resource Stewardship
and Science Directorate. IRMA: the Integrated Resource Management Applications
Portal. [Vascular Plant Species List for Olympic National Park]. Available from:
https://irma.nps.gov/Portal/

U.S. Fish and Wildlife Service. (2013). Environmental Conservation Online System (ECOS):
FWS-Listed U.S. Species by Taxonomic Group. Available from: https://ecos.fws.gov
/ecp/report/species-listings-by-tax-group-totals

Veron, S.T., Davies, J., Cadotte, M.W., Clergeau, P., Pavoine, S. (2015). Predicting Loss of
Evolutionary History: Where Are We? Biological Reviews, 92(1): 271-91.
doi:10.1111/brv.12228.

Washington Department of Natural Resources, Natural Heritage Program. (2019). 2019
Washington Vascular Plant Species of Special Concern, Washington Natural Heritage
Program Report Number: 2019-04. Available from: https://dnr.wa.gov/publications
/amp_nh_vascular_ets.pdf

Walker, J.D., Geissman, J.W., Bowring, S.A., Babcock, L.E. (2013). The Geological Society of
America Geologic Time Scale. Geological Society of America Bulletin, 125(3/4): 359272.

Wikstrom, N., Savolainen, V., Chase, M.W. (2001). Evolution of Angiosperms: Calibrating the
Family Tree. Proceedings of the Royal Society, Series B (268): 2211-2220.
35

Withey, J.C., Lawler, J.J., Polasky, S., Plantinga, A.J., Nelson, E.J., Kareiva, P., Wilsey, C.B., et
al. (2012). Maximising Return on Conservation Investment in the Conterminous USA.
Edited by James Sanchirico. Ecology Letters, 15(11): 1249-56.
doi:10.1111/j.1461-0248.2012.01847.x.

Webb, C. O., Ackerly, D. D. & Kembel, S. W. (2008) Phylocom: software for the analysis of
phylogenetic community structure and trait evolution. Bioinformatics, 24: 2098-2100.

Webb, C.O., Donoghue, M.J. (2005). Phylomatic: tree assembly for applied phylogenetics.
Molecular Ecology Notes, (5):181-183. doi: 10.1111/j.1471-8286.2004.00829.x

Zanne, A.E., et al. (2014). Three keys to the radiation of angiosperms into freezing
environments. Nature (506): 89-92. doi:10.1038/nature12872.

36

Appendices
Appendix A
Angiosperms found within Olympic National Park, ranked by ED score. ED scores are rounded
to two decimal places, and differences in ranks represent differences in ED scores. Species
marked with an asterisk (*) represent recognized infraspecies present in the park that were not
included in the Zanne et al. (2014) phylogeny. Synonyms, where applicable, are listed in
parentheses.
Rank

Order

Family

Scientific Name

1

Piperales

Aristolochiaceae

Asarum caudatum

180.93

2

Nymphaeales

Cabombaceae

Brasenia schreberi

156.36

3

Nymphaeales

Nymphaeaceae

Nymphaea odorata

153.23

4

Nymphaeales

Nymphaeaceae

Nuphar polysepala

153.23

5

Alismatales

Tofieldiaceae

Triantha occidentalis

142.99

6

Alismatales

Araceae

Lysichiton americanus

131.11

7

Ranunculales

Papaveraceae

Dicentra formosa

120.09

8

Ranunculales

Berberidaceae

Berberis nervosa

119.42

9

Ranunculales

Berberidaceae

Achlys californica

119.42

10

Asparagales

Orchidaceae

Epipactus gigantea

113.05

11

Asparagales

Orchidaceae

Cephalanthera austiniae

113.05

12

Oxalidales

Oxalidaceae

Oxalis oregana

111.90

13

Ceratophyllales Ceratophyllaceae

Ceratophyllum echinatum

111.89

14

Ceratophyllales Ceratophyllaceae

Ceratophyllum demersum

111.89

15

Liliales

Liliaceae

Prosartes smithii

108.55

16

Ranunculales

Ranunculaceae

Coptis asplenifolia

106.80

17

Ranunculales

Ranunculaceae

Caltha leptosepala

106.80

37

ED Score

18

Ranunculales

Ranunculaceae

Arcteranthis cooleyae

106.80

19

Alismatales

Araceae

Spirodela polyrhiza

103.17

20

Alismatales

Araceae

Lemna minor

103.17

21

Malphigiales

Elatinaceae

Elatine triandra

101.57

22

Malvales

Malvaceae

Sidalcea hendersonii

101.45

23

Ranunculales

Ranunculaceae

Coptis laciniata

99.38

24

Ranunculales

Berberidaceae

Berberis aquifolium

99.37

25

Ranunculales

Papaveraceae

Corydalis scouleri

91.85

26

Ranunculales

Papaveraceae

Corydalis aurea

91.85

27

Ranunculales

Berberidaceae

Vancouveria hexandra

87.68

28

Ranunculales

Berberidaceae

Achlys triphylla

87.68

29

Geraniales

Geraniaceae

Geranium carolinianum

87.39

30

Caryophyllales

Droseraceae

Drosera rotundifolia

86.79

31

Asparagales

Orchidaceae

Neottia convallarioides

85.19

32

Asparagales

Orchidaceae

Neottia banksiana

85.19

33

Rosales

Rosaceae

Spiraea splendens

83.29

34

Rosales

Rosaceae

Sorbus sitchensis

83.29

35

Rosales

Rosaceae

Petrophytum hendersonii

83.29

36

Rosales

Rosaceae

Geum triflorum

83.29

37

Rosales

Rosaceae

Aruncus doicus

83.29

38

Rosales

Rosaceae

Dryas drummondii

82.49

39

Dipsacales

Adoxaceae

Viburnum edule

81.61

40

Ranunculales

Ranunculaceae

Ranunculus grayi

80.44

38

41

Ranunculales

Ranunculaceae

Ranunculus glaberrimus

80.44

42

Ranunculales

Ranunculaceae

Delphinium nuttallii

80.44

43

Ranunculales

Ranunculaceae

Delphinium glareosum

80.44

44

Rosales

Rhamnaceae

Ceanothus velutinus

80.09

45

Sapindales

Anacardiaceae

Rhus diversiloba

79.27

46

Apiales

Araliaceae

Oplopanax horridus

77.86

47

Asparagales

Orchidaceae

Neottia cordata

76.88

48

Saxifragales

Saxifragaceae

Chrysosplenium

76.65

glechomifolium
49

Celastrales

Celastraceae

Paxistima myrsinites

76.47

50

Rosales

Rhamnaceae

Frangula purshiana

75.23

51

Rosales

Rhamnaceae

Ceanothus sanguineus

75.23

52

Saxifragales

Crassulaceae

Crassula aquatica

75.07

53

Asparagales

Asparagaceae

Camassia quamash

74.93

54

Asparagales

Amaryllidaceae

Allium cernuum

74.26

55

Rosales

Urticaceae

Urtica dioica

74.18

56

Rosales

Elaeagnaceae

Shepherdia canadensis

74.18

57

Solanales

Convolvulaceae

Calystegia soldanella

73.64

58

Alismatales

Juncaginaceae

Triglochin maritima

73.09

59

Apiales

Apiaceae

Yabea microcarpa

72.94

60

Apiales

Apiaceae

Lilaeopsis occidentalis

72.94

61

Apiales

Apiaceae

Ligusticum apiifolium

72.94

62

Apiales

Apiaceae

Heracleum lanatum

72.94

39

63

Apiales

Apiaceae

Daucus pusillus

72.94

64

Ranunculales

Ranunculaceae

Trollius laxus

72.58

65

Liliales

Melanthiaceae

Toxicoscordion venenosum

72.33

66

Liliales

Melanthiaceae

Anticlea occidentalis

72.33

67

Ranunculales

Ranunculaceae

Aquilegia formosa

71.61

68

Ranunculales

Ranunculaceae

Thalictrum occidentale

71.61

69

Fabales

Fabaceae

Thermopsis gracilis

70.84

70

Fabales

Fabaceae

Syrmatium decumbens

70.84

71

Fabales

Fabaceae

Oxytropis viscida

70.84

72

Fabales

Fabaceae

Lathyrus polyphyllus

70.84

73

Fabales

Fabaceae

Hedysarum occidentale

70.84

74

Ericales

Polemoniaceae

Linanthus bicolor

70.47

75

Ericales

Polemoniaceae

Collomia debilis

70.47

76

Fagales

Fagaceae

Chrysolepis chrysophylla

70.11

77

Dipsacales

Caprifoliaceae

Valeriana scouleri

69.08

78

Dipsacales

Caprifoliaceae

Linnea borealis

69.08

79

Geraniales

Geraniaceae

Geranium viscosissimum

68.95

80

Geraniales

Geraniaceae

Geranium bicknellii

68.95

81

Alismatales

Alismataceae

Sagittaria cuneata

68.51

82

Asparagales

Orchidaceae

Platanthera unalascensis

68.47

83

Asparagales

Orchidaceae

Platanthera stricta

68.47

84

Asparagales

Orchidaceae

Platanthera elongata

68.47

85

Asparagales

Orchidaceae

Platanthera elegans

68.47

40

86

Asparagales

Orchidaceae

Platanthera dilatata

68.47

87

Cornales

Cornaceae

Cornus sericea

68.13

88

Asparagales

Orchidaceae

Platanthera hyperborea

67.51

89

Cornales

Cornaceae

Cornus canadensis

67.27

90

Cornales

Cornaceae

Cornus nuttallii

67.27

91

Ranunculales

Ranunculaceae

Anemone oregana

67.26

92

Ranunculales

Ranunculaceae

Anemone lithophila

67.26

93

Ranunculales

Ranunculaceae

Anemone grayii

67.26

94

Ranunculales

Ranunculaceae

Anemone deltoidea

67.26

95

Asterales

Menyanthaceae

Nephrophyllidium crista-galli

67.04

96

Asterales

Menyanthaceae

Menyanthes trifoliata

67.04

97

Alismatales

Hydrocharitaceae

Elodea canadensis

66.11

98

Asparagales

Asparagaceae

Triteleia hyacinthina

65.82

99

Malphigiales

Hydrocharitaceae

Hypericum scouleri

65.79

100

Malphigiales

Hydrocharitaceae

Hypericum anagalloides

65.79

101

Myrtales

Onagraceae

Ludwigia palustris

65.74

102

Myrtales

Onagraceae

Oenothera villosa

65.74

103

Cornales

Hydrangeaceae

Whipplea modesta

64.99

104

Cornales

Hydrangeaceae

Philadelphus lewisii

64.99

105

Liliales

Liliaceae

Streptopus streptopoides

64.54

106

Liliales

Liliaceae

Prosartes hookeri

64.54

107

Liliales

Liliaceae

Gagea serotina

64.54

108

Ericales

Ericaceae

Pleuricospora fimbriolata

63.39

41

109

Ericales

Ericaceae

Phyllodoce intermedia

63.39

110

Ericales

Ericaceae

Monotropa hyopitys

63.39

111

Ericales

Ericaceae

Ledum palustre

63.39

112

Ericales

Ericaceae

Hemitomes congestum

63.39

113

Ericales

Ericaceae

Allotropa virgata

63.39

114

Rosales

Rosaceae

Sanguisorba procumbens

62.71

115

Rosales

Rosaceae

Sanguisorba menziesii

62.71

116

Rosales

Rosaceae

Potentilla glandulosa

62.71

117

Rosales

Rosaceae

Potentilla flabellifolia

62.71

118

Brassicales

Brassicaceae

Cochlearia groenlandica

62.63

119

Brassicales

Brassicaceae

Boechera holbellii

62.63

120

Caryophyllales

Plumbaginaceae

Armeria maritima

62.26

121

Santales

Santalaceae

Arceuthobium tsugense

61.52

122

Santales

Santalaceae

Arceuthobium

61.52

campylopodium
123

Alismatales

Alismataceae

Sagittaria latifolia

60.73

124

Alismatales

Alismataceae

Alisma triviale

60.73

125

Dipsacales

Adoxaceae

Sambucus cerulea

60.37

126

Dipsacales

Adoxaceae

Sambucus racemosa

60.37

127

Rosales

Rosaceae

Geum macrophyllum

60.30

128

Fagales

Fagaceae

Myrica gale

59.77

129

Asterales

Campanulaceae

Lobelia dortmanna

59.76

130

Gentianales

Rubiaceae

Galium oreganum

59.17

42

131

Asparagales

Orchidaceae

Calypso bulbosa

59.16

132

Rosales

Rosaceae

Sanguisorba canadensis

58.47

133

Ericales

Primulaceae

Trientalis arctica

57.99

134

Boraginales

Boraginaceae

Plagiobothrys scouleri

57.86

135

Boraginales

Boraginaceae

Phacelia leptosepala

57.86

136

Boraginales

Boraginaceae

Mertensia platyphylla

57.86

137

Boraginales

Boraginaceae

Hydrophyllum fendleri

57.86

138

Boraginales

Boraginaceae

Cryptantha intermedia

57.86

139

Boraginales

Boraginaceae

Amsinckia menziesii

57.86

140

Saxifragales

Saxifragaceae

Lithophragma parviflorum

57.84

141

Saxifragales

Saxifragaceae

Lithophragma glabrum

57.84

142

Saxifragales

Saxifragaceae

Heuchera glabra

57.84

143

Saxifragales

Saxifragaceae

Heuchera chlorantha

57.84

144

Caryophyllales

Polygonaceae

Persicaria amphibia

57.60

145

Caryophyllales

Polygonaceae

Eriogonum ovalifolium

57.60

146

Asparagales

Amaryllidaceae

Allium crenulatum

57.39

147

Asparagales

Amaryllidaceae

Allium acuminatum

57.39

148

Lamiales

Oleaceae

Fraxinus latifolia

57.34

149

Liliales

Melanthiaceae

Xerophyllum tenax

56.96

150

Liliales

Melanthiaceae

Trillium ovatum

56.96

151

Gentianales

Apocynaceae

Apocynum androsaemifolium

55.41

152

Apiales

Apiaceae

Osmorhiza purpurea

55.08

153

Apiales

Apiaceae

Osmorhiza occidentalis

55.08

43

154

Apiales

Apiaceae

Lomatium utriculatum

55.08

155

Apiales

Apiaceae

Lomatium martindalei

55.08

156

Apiales

Apiaceae

Angelica hendersonii

55.08

157

Apiales

Apiaceae

Angelica genuflexa

55.08

158

Ericales

Polemoniaceae

Phlox hendersonii

53.32

159

Ericales

Polemoniaceae

Phlox diffusa

53.32

160

Asparagales

Orchidaceae

Spiranthes romanzoffiana

52.82

161

Asparagales

Orchidaceae

Goodyera oblongifolia

52.82

162

Dipsacales

Caprifoliaceae

Lonicera utahensis

52.68

163

Dipsacales

Caprifoliaceae

Lonicera ciliosa

52.68

164

Caryophyllales

Caryophyllaceae

Sagina maxima

52.38

165

Caryophyllales

Caryophyllaceae

Moehringia macrophylla

52.38

166

Caryophyllales

Caryophyllaceae

Eremogone capillaris

52.38

167

Caryophyllales

Caryophyllaceae

Cerastium beeringianum

52.38

168

Caryophyllales

Caryophyllaceae

Cardionema ramosissimum

52.38

169

Caryophyllales

Caryophyllaceae

Arenaria paludicola

52.38

170

Asparagales

Asparagaceae

Dichelostemma congestum

52.38

171

Asparagales

Asparagaceae

Brodiaea coronaria

52.38

172

Celastrales

Celastraceae

Parnassia palustris

52.09

173

Celastrales

Celastraceae

Parnassia fimbriata

52.09

174

Poales

Typhaceae

Typha latifolia

51.65

175

Liliales

Melanthiaceae

Anticlea elegans

51.04

176

Saxifragales

Haloragraceae

Myriophyllum verticillatum

50.94

44

177

Saxifragales

Haloragraceae

Myriophyllum sibiricum

50.94

178

Sapindales

Sapindaceae

Acer circinatum

50.94

179

Myrtales

Onagraceae

Clarkia purpurea

50.11

180

Myrtales

Onagraceae

Clarkia amoena

50.11

181

Poales

Poaceae

Trisetum cernuum

49.07

182

Poales

Poaceae

Puccinellia nutkaensis

49.07

183

Poales

Poaceae

Pleuropogon refractus

49.07

184

Poales

Poaceae

Panicum acuminatum

49.07

185

Poales

Poaceae

Hierochloe odorata

49.07

186

Poales

Poaceae

Helictotrichon canescens

49.07

187

Poales

Poaceae

Glyceria leptostachya

49.07

188

Poales

Poaceae

Deschampsia atropurpurea

49.07

189

Alismatales

Hydrocharitaceae

Vallisneria americana

48.55

190

Alismatales

Hydrocharitaceae

Najas flexilis

48.55

191

Ericales

Ericaceae

Arctostaphylos uva-ursi

47.87

192

Ericales

Ericaceae

Arctostaphylos media

47.87

193

Fabales

Fabaceae

Trifolium wormsskjoldii

47.79

194

Fabales

Fabaceae

Trifolium wildenovii

47.79

195

Fabales

Fabaceae

Trifolium microdon

47.79

196

Fabales

Fabaceae

Lupinus lyallii

47.79

197

Fabales

Fabaceae

Lupinus littoralis

47.79

198

Fabales

Fabaceae

Lupinus albicaulis

47.79

199

Fabales

Fabaceae

Astragalus microcystus

47.79

45

200

Fabales

Fabaceae

Astragalus lentiginosus

47.79

201

Fabales

Fabaceae

Astragalus cottonii

47.79

202

Liliales

Liliaceae

Clintonia uniflora

47.69

203

Dipsacales

Caprifoliaceae

Valeriana sitchensis

47.52

204

Dipsacales

Caprifoliaceae

Valeriana samolifolia

47.52

205

Alismatales

Potamogetonaceae Stuckenia filiformis

47.47

206

Caryophyllales

Nyctaginaceae

Abronia latifolia

47.39

207

Caryophyllales

Nyctaginaceae

Abronia umbellata

47.39

208

Rosales

Rosaceae

Rubus spectabilis

47.28

209

Rosales

Rosaceae

Rubus praecox

47.28

210

Rosales

Rosaceae

Rubus pedatus

47.28

211

Rosales

Rosaceae

Rubus parviflorus

47.28

212

Rosales

Rosaceae

Rubus nivalis

47.28

213

Rosales

Rosaceae

Rubus leucodermis

47.28

214

Rosales

Rosaceae

Rubus lasiococcus

47.28

215

Rosales

Rosaceae

Rubus laciniatus

47.28

216

Rosales

Rosaceae

Potentilla anserina

47.09

217

Asterales

Asteraceae

Tonestus lyallii

46.86

218

Asterales

Asteraceae

Symphyotrichum chilense

46.86

219

Asterales

Asteraceae

Saussurea americana

46.86

220

Asterales

Asteraceae

Pseudognaphalium canescens

46.86

221

Asterales

Asteraceae

Pentacalia amplexicaulis

46.86

222

Asterales

Asteraceae

Oreostemma alpigenum

46.86

46

223

Asterales

Asteraceae

Nabalus alatus

46.86

224

Asterales

Asteraceae

Luina hypoleuca

46.86

225

Asterales

Asteraceae

Lasthenia maritima

46.86

226

Asterales

Asteraceae

Hemizonella minima

46.86

227

Asterales

Asteraceae

Grindelia hirsutula

46.86

228

Asterales

Asteraceae

Eurybia merita

46.86

229

Asterales

Asteraceae

Eucephalus paucicapitatus

46.86

230

Asterales

Asteraceae

Crepis occidentalis

46.86

231

Asterales

Asteraceae

Cirsium edule

46.86

232

Asterales

Asteraceae

Askellia pygmaea

46.86

233

Asterales

Asteraceae

Anisocarpus madioides

46.86

234

Asterales

Asteraceae

Ambrosia chamissonis

46.86

235

Asterales

Asteraceae

Packera flettii

46.86

236

Malphigiales

Salicaceae

Salix sitchensis

46.85

237

Malphigiales

Salicaceae

Salix sessilifolia

46.85

238

Malphigiales

Salicaceae

Salix scouleriana

46.85

239

Malphigiales

Salicaceae

Salix lasiandra

46.85

240

Malphigiales

Salicaceae

Salix hookeriana

46.85

241

Malphigiales

Salicaceae

Salix commutata

46.85

242

Malphigiales

Salicaceae

Salix brachycarpa

46.85

243

Malphigiales

Salicaceae

Salix barclayi

46.85

244

Saxifragales

Saxifragaceae

Mitella trifida

46.55

245

Saxifragales

Saxifragaceae

Mitella pentandra

46.55

47

246

Saxifragales

Saxifragaceae

Mitella ovalis

46.55

247

Saxifragales

Saxifragaceae

Mitella caulescens

46.55

248

Saxifragales

Saxifragaceae

Mitella breweri

46.55

249

Asterales

Campanulaceae

Campanula piperi

46.52

250

Asterales

Campanulaceae

Campanula parryi

46.52

251

Rosales

Rosaceae

Rubus occidentalis

46.20

252

Rosales

Rosaceae

Rubus ursinus

46.20

253

Saxifragales

Crassulaceae

Sedum stenopetalum

45.79

254

Saxifragales

Crassulaceae

Sedum spathulifolium

45.79

255

Saxifragales

Crassulaceae

Sedum rupicola

45.79

256

Saxifragales

Crassulaceae

Sedum oreganum

45.79

257

Saxifragales

Crassulaceae

Sedum lanceolatum

45.79

258

Saxifragales

Crassulaceae

Sedum divergens

45.79

259

Saxifragales

Saxifragaceae

Suksdorfia ranunculifolia

45.39

260

Saxifragales

Saxifragaceae

Boykinia occidentalis

45.39

261

Caryophyllales

Amaranthaceae

Chenopodium

44.63

chenopodioides
262

Caryophyllales

Amaranthaceae

Atriplex gmelinii

44.63

263

Ericales

Ericaceae

Arctostaphylos columbiana

44.59

264

Ericales

Ericaceae

Arbutus menziesii

44.59

265

Ericales

Primulaceae

Androsace nivalis

44.48

266

Ericales

Primulaceae

Androsace laevigata

44.48

267

Boraginales

Boraginaceae

Romanzoffia tracyi

43.91

48

268

Boraginales

Boraginaceae

Romanzoffia sitchensis

43.91

269

Rosales

Rosaceae

Physocarpus capitatus

43.89

270

Saxifragales

Saxifragaceae

Saxifraga tolmiei

43.73

271

Saxifragales

Saxifragaceae

Saxifraga tischii

43.73

272

Saxifragales

Saxifragaceae

Saxifraga rufidula

43.73

273

Saxifragales

Saxifragaceae

Saxifraga odontoloma

43.73

274

Saxifragales

Saxifragaceae

Saxifraga nelsoniana

43.73

275

Saxifragales

Saxifragaceae

Saxifraga integrifolia

43.73

276

Saxifragales

Saxifragaceae

Saxifraga ferruginea

43.73

277

Saxifragales

Saxifragaceae

Saxifraga austromontana

43.73

278

Rosales

Rosaceae

Sibbaldia procumbens

43.70

279

Sapindales

Sapindaceae

Acer macrophyllum

43.05

280

Sapindales

Sapindaceae

Acer glabrum

43.05

281

Asparagales

Orchidaceae

Corallorhiza maculata

42.99

282

Ericales

Ericaceae

Vaccinium oxycoccos

42.70

283

Ericales

Ericaceae

Vaccinium cespitosum

42.70

284

Ericales

Ericaceae

Vaccinium alaskaense

42.70

285

Asparagales

Iridaceae

Olsynium douglasii

42.54

286

Lamiales

Scrophulariaceae

Scrophularia californica

42.50

287

Brassicales

Brassicaceae

Cardamine occidentalis

42.38

288

Brassicales

Brassicaceae

Cardamine nuttallii

42.38

289

Brassicales

Brassicaceae

Cardamine angulata

42.38

290

Brassicales

Brassicaceae

Arabis furcata

42.38

49

291

Brassicales

Brassicaceae

Arabis eschscholtziana

42.38

292

Brassicales

Brassicaceae

Arabis divaricarpa

42.38

293

Rosales

Rosaceae

Aphanes arvensis

42.26

294

Rosales

Rosaceae

Comarum palustre

42.26

295

Lamiales

Lentibulariaceae

Pinguicula macroceras

41.89

296

Asparagales

Orchidaceae

Corallorhiza striata

41.85

297

Asparagales

Orchidaceae

Corallorhiza mertensiana

41.85

298

Ericales

Ericaceae

Pterospora andromedea

41.79

299

Ericales

Ericaceae

Monotropa uniflora

41.79

300

Malphigiales

Violaceae

Viola sempervirens

41.33

301

Malphigiales

Violaceae

Viola orbiculata

41.33

302

Malphigiales

Violaceae

Viola langsdorfii

41.33

303

Malphigiales

Violaceae

Viola howellii

41.33

304

Malphigiales

Violaceae

Viola flettii

41.33

305

Ericales

Primulaceae

Lysimachia maritima

41.17

306

Ericales

Primulaceae

Trientalis borealis

41.17

307

Poales

Typhaceae

Sparganium natans

40.89

308

Poales

Typhaceae

Sparganium fluctuans

40.89

309

Saxifragales

Saxifragaceae

Saxifraga mertensiana

40.88

310

Saxifragales

Saxifragaceae

Saxifraga cespitosa

40.88

311

Fagales

Betulaceae

Betula glandulosa

40.74

312

Fagales

Betulaceae

Corylus cornuta

40.74

313

Caryophyllales

Amaranthaceae

Salicornia virginica

40.26

50

314

Caryophyllales

Amaranthaceae

Atriplex patula

40.26

315

Liliales

Melanthiaceae

Veratrum viride

40.17

316

Liliales

Melanthiaceae

Veratrum californicum

40.17

317

Fagales

Betulaceae

Alnus rubra

39.90

318

Fagales

Betulaceae

Alnus alnobetula

39.90

319

Brassicales

Brassicaceae

Draba stenoloba

39.85

320

Brassicales

Brassicaceae

Draba paysonii

39.85

321

Brassicales

Brassicaceae

Draba lonchocarpa

39.85

322

Brassicales

Brassicaceae

Draba juvenilis

39.85

323

Caryophyllales

Caryophyllaceae

Minuartia rossii

39.73

324

Caryophyllales

Caryophyllaceae

Minuartia obtusiloba

39.73

325

Caryophyllales

Polygonaceae

Polygonum douglasii

39.69

326

Caryophyllales

Polygonaceae

Oxyria digyna

39.69

327

Caryophyllales

Polygonaceae

Rumex salicifolius

39.59

328

Caryophyllales

Polygonaceae

Rumex occidentalis

39.59

329

Caryophyllales

Polygonaceae

Rumex maritimus

39.59

330

Malphigiales

Salicaceae

Populus tremuloides

39.32

331

Malphigiales

Salicaceae

Populus trichocarpa

39.32

332

Saxifragales

Grossulariaceae

Ribes lacustre

39.26

333

Saxifragales

Grossulariaceae

Ribes howellii

39.26

334

Ericales

Polemoniaceae

Microsteris gracilis

38.42

335

Myrtales

Onagraceae

Epilobium oregonense

38.38

336

Myrtales

Onagraceae

Epilobium mirabile

38.38

51

337

Myrtales

Onagraceae

Epilobium luteum

38.38

338

Myrtales

Onagraceae

Epilobium lanatum

38.38

339

Myrtales

Onagraceae

Epilobium halleanum

38.38

340

Myrtales

Onagraceae

Epilobium glaberrimum

38.38

341

Myrtales

Onagraceae

Epilobium clavatum

38.38

342

Myrtales

Onagraceae

Epilobium angustifolium

38.38

343

Myrtales

Onagraceae

Circaea alpina

38.38

344

Boraginales

Boraginaceae

Myosotis laxa

38.36

345

Boraginales

Boraginaceae

Mertensia paniculata

38.36

346

Rosales

Rosaceae

Spiraea douglasii

38.00

347

Poales

Cyperaceae

Scirpus atrocinctus

37.60

348

Poales

Cyperaceae

Bolboschoenus fluviatilis

37.60

349

Asterales

Asteraceae

Sisyrinchium littorale

37.37

350

Asterales

Asteraceae

Sisyrinchium idahoense

37.37

351

Lamiales

Orobanchaceae

Orthocarpus imbricatus

37.36

352

Ranunculales

Ranunculaceae

Actaea rubra

37.21

353

Ranunculales

Ranunculaceae

Actaea elata

37.21

354

Poales

Poaceae

Stipa nelsonii

37.13

355

Poales

Poaceae

Stipa lemmonii

37.13

356

Alismatales

Potamogetonaceae Potamogeton amplifolius

36.98

357

Liliales

Melanthiaceae

Maianthemum dilatatum

36.84

358

Liliales

Melanthiaceae

Streptopus lanceolatus

36.77

359

Liliales

Melanthiaceae

Streptopus amplexifolius

36.77

52

360

Alismatales

Zosteraceae

Phyllospadix serrulatus

36.69

361

Saxifragales

Grossulariaceae

Ribes bracteosum

36.67

362

Saxifragales

Grossulariaceae

Ribes triste

36.67

363

Ericales

Primulaceae

Dodecatheon pulchellum

36.37

364

Ericales

Primulaceae

Dodecatheon jeffreyi

36.37

365

Ericales

Primulaceae

Dodecatheon hendersonii

36.37

366

Ericales

Primulaceae

Dodecatheon dentatum

36.37

367

Ericales

Primulaceae

Dodecatheon austrofrigidum

36.37

368

Ericales

Ericaceae

Chimaphila umbellata

36.26

369

Rosales

Rosaceae

Oemleria cerasiformis

36.21

370

Liliales

Melanthiaceae

Maianthemum stellatum

36.04

371

Liliales

Melanthiaceae

Maianthemum racemosum

36.04

372

Caryophyllales

Polygonaceae

Polygonum nuttallii

35.99

373

Caryophyllales

Polygonaceae

Polygonum newberryi

35.99

374

Caryophyllales

Polygonaceae

Polygonum minimum

35.99

375

Caryophyllales

Polygonaceae

Polygonum hydropiper

35.99

376

Caryophyllales

Polygonaceae

Polygonum bistortoides

35.99

377

Rosales

Rosaceae

Luetkea pectinata

35.98

378

Rosales

Rosaceae

Holodiscus discolor

35.98

379

Ericales

Ericaceae

Cassiope mertensiana

35.79

380

Alismatales

Zosteraceae

Zostera marina

35.71

381

Rosales

Rosaceae

Potentilla drummondii

35.63

382

Rosales

Rosaceae

Dasiphora fruticosa

35.63

53

383

Lamiales

Lamiaceae

Stachys mexicana

35.50

384

Lamiales

Lamiaceae

Micromeria douglasii

35.50

385

Asterales

Asteraceae

Taraxacum olympicum

35.42

386

Asterales

Asteraceae

Taraxacum campylodes

35.42

387

Asterales

Asteraceae

Madia gracilis

35.42

388

Asterales

Asteraceae

Madia exigua

35.42

389

Asterales

Asteraceae

Hieracium scouleri

35.42

390

Asterales

Asteraceae

Hieracium froelichianum

35.42

391

Asterales

Asteraceae

Gnaphalium purpureum

35.42

392

Asterales

Asteraceae

Gnaphalium palustre

35.42

393

Asterales

Asteraceae

Artemisia suksdorfii

35.42

394

Asterales

Asteraceae

Artemisia furcata

35.42

395

Asterales

Asteraceae

Agoseris monticola

35.42

396

Asterales

Asteraceae

Agoseris glauca

35.42

397

Malphigiales

Violaceae

Viola adunca

35.27

398

Saxifragales

Grossulariaceae

Ribes sanguineum

34.56

399

Saxifragales

Grossulariaceae

Ribes laxiflorum

34.56

400

Malphigiales

Violaceae

Viola palustris

34.25

401

Malphigiales

Violaceae

Viola glabella

34.25

402

Asterales

Campanulaceae

Campanula scouleri

34.17

403

Asterales

Campanulaceae

Campanula rotundifolia

34.17

404

Malphigiales

Salicaceae

Salix reticulata

34.03

405

Malphigiales

Salicaceae

Salix arctica

34.03

54

406

Liliales

Liliaceae

Lilium columbianum

33.86

407

Liliales

Liliaceae

Fritillaria affinis

33.86

408

Saxifragales

Saxifragaceae

Leptarrhena pyrolifolia

33.58

409

Lamiales

Plantaginaceae

Tonella tenantha

33.48

410

Lamiales

Plantaginaceae

Synthyris schizantha

33.48

411

Lamiales

Plantaginaceae

Plantago macrocarpa

33.48

412

Lamiales

Plantaginaceae

Penstemon procerus

33.48

413

Apiales

Apiaceae

Sanicula graveolens

33.23

414

Apiales

Apiaceae

Sanicula crassicaulis

33.23

415

Poales

Poaceae

Melica subulata

33.15

416

Poales

Poaceae

Melica smithii

33.15

417

Poales

Poaceae

Melica harfordii

33.15

418

Poales

Poaceae

Festuca subuliflora

33.15

419

Poales

Poaceae

Festuca subulata

33.15

420

Poales

Poaceae

Festuca saximontana

33.15

421

Poales

Poaceae

Elymus trachycaulis

33.15

422

Poales

Poaceae

Elymus occidentalis

33.15

423

Poales

Poaceae

Elymus hirsutus

33.15

424

Poales

Poaceae

Bromus vulgaris

33.15

425

Poales

Poaceae

Bromus sitchensis

33.15

426

Poales

Poaceae

Bromus pacificus

33.15

427

Ranunculales

Ranunculaceae

Anemone occidentalis

32.76

428

Poales

Typhaceae

Sparganium eurycarpum

32.65

55

429

Dipsacales

Caprifoliaceae

Lonicera involucrata

32.58

430

Dipsacales

Caprifoliaceae

Lonicera hispidula

32.58

431

Saxifragales

Grossulariaceae

Ribes lobbii

32.25

432

Saxifragales

Grossulariaceae

Ribes divaricatum

32.25

433

Caryophyllales

Caryophyllaceae

Stellaria obtusa

32.14

434

Caryophyllales

Caryophyllaceae

Stellaria nitens

32.14

435

Caryophyllales

Caryophyllaceae

Stellaria humifusa

32.14

436

Caryophyllales

Caryophyllaceae

Stellaria crispa

32.14

437

Caryophyllales

Caryophyllaceae

Stellaria calycantha

32.14

438

Ericales

Ericaceae

Moneses uniflora

32.12

439

Ericales

Ericaceae

Chimaphila menziesii

32.12

440

Poales

Juncaceae

Luzula multiflora

32.00

441

Asterales

Asteraceae

Erigeron peregrinus

31.61

442

Asterales

Asteraceae

Erigeron flettii

31.61

443

Asterales

Asteraceae

Erigeron aliceae

31.61

444

Fagales

Fabaceae

Oxytropis campestris

31.42

445

Rosales

Rosaceae

Prunus emarginata

31.17

446

Rosales

Rosaceae

Prunus virginiana

31.17

447

Poales

Poaceae

Calamagrostis sesquiflora

31.16

448

Poales

Poaceae

Calamagrostis nutkaensis

31.16

449

Poales

Poaceae

Calamagrostis inexpansa

31.16

450

Poales

Poaceae

Calamagrostis crassiglumis

31.16

451

Poales

Poaceae

Agrostis variabilis

31.16

56

452

Poales

Poaceae

Agrostis oregonensis

31.16

453

Poales

Poaceae

Agrostis humilis

31.16

454

Poales

Poaceae

Agrostis aequivalvis

31.16

455

Lamiales

Orobanchaceae

Orobanche fasciculata

30.67

456

Ericales

Ericaceae

Orthilia secunda

30.18

457

Saxifragales

Saxifragaceae

Saxifraga bronchialis

29.83

458

Asterales

Asteraceae

Senecio neowebsteri

29.71

459

Asterales

Asteraceae

Senecio multiradiata

29.71

460

Asterales

Asteraceae

Senecio lugens

29.71

461

Asterales

Asteraceae

Senecio fremontii

29.71

462

Asterales

Asteraceae

Arnica rydbergii

29.71

463

Asterales

Asteraceae

Arnica parryi

29.71

464

Asterales

Asteraceae

Arnica ovata

29.71

465

Asterales

Asteraceae

Arnica nevadensis

29.71

466

Lamiales

Orobanchaceae

Boschniakia hookeri

28.82

467

Rosales

Rosaceae

Potentilla gracilis

28.71

468

Rosales

Rosaceae

Potentilla villosa

28.71

469

Poales

Typhaceae

Sparganium emersum

28.68

470

Poales

Typhaceae

Sparganium angustifolium

28.68

471

Poales

Cyperaceae

Schoenoplectus subterminalis

28.53

472

Poales

Cyperaceae

Schoenoplectus acutus

28.53

473

Lamiales

Orobanchaceae

Pedicularis contorta

28.48

474

Lamiales

Orobanchaceae

Pedicularis bracteosa

28.48

57

475

Lamiales

Orobanchaceae

Orobanche pinorum

28.48

476

Lamiales

Orobanchaceae

Orobance unflora

28.48

477

Lamiales

Orobanchaceae

Castilleja parviflora

28.48

478

Lamiales

Orobanchaceae

Castilleja hispida

28.48

479

Poales

Poaceae

Poa wheeleri

28.17

480

Poales

Poaceae

Poa suksdorfii

28.17

481

Poales

Poaceae

Poa stenantha

28.17

482

Poales

Poaceae

Poa rupicola

28.17

483

Poales

Poaceae

Poa pacispicula

28.17

484

Poales

Poaceae

Poa marcida

28.17

485

Poales

Poaceae

Poa laxiflora

28.17

486

Poales

Poaceae

Poa confinis

28.17

487

Asterales

Asteraceae

Antennaria umbrinella

27.80

488

Asterales

Asteraceae

Antennaria racemosa

27.80

489

Asterales

Asteraceae

Antennaria neglecta

27.80

490

Asterales

Asteraceae

Antennaria media

27.80

491

Asterales

Asteraceae

Antennaria lanata

27.80

492

Asterales

Asteraceae

Antennaria howellii

27.80

493

Ranunculales

Ranunculaceae

Myosurus minimus

27.74

494

Ranunculales

Ranunculaceae

Trautvetteria caroliniensis

27.63

495

Ranunculales

Ranunculaceae

Halerpestes cymbalaria

27.63

496

Alismatales

Zosteraceae

Phyllospadix torreyi

27.57

497

Alismatales

Zosteraceae

Phyllospadix scouleri

27.57

58

498

Gentianales

Gentianaceae

Gentiana sceptrum

27.50

499

Gentianales

Gentianaceae

Gentiana douglasiana

27.50

500

Gentianales

Gentianaceae

Gentiana calycosa

27.50

501

Gentianales

Gentianaceae

Gentiana amarella

27.50

502

Asterales

Asteraceae

Hieracium albiflorum

27.32

503

Saxifragales

Saxifragaceae

Saxifraga oppositifolia

27.28

504

Saxifragales

Saxifragaceae

Saxifraga rivularis

27.28

505

Asterales

Asteraceae

Lactuca biennis

27.10

506

Ranunculales

Ranunculaceae

Delphinium menziesii

26.98

507

Ranunculales

Ranunculaceae

Delphinium glaucum

26.98

508

Poales

Juncaceae

Luzula piperi

26.19

509

Poales

Juncaceae

Luzula hitchcockii

26.19

510

Caryophyllales

Polygonaceae

Potamogeton natans

26.17

511

Apiales

Apiaceae

Cicuta douglasii

26.16

512

Apiales

Apiaceae

Oenanthe sarmentosa

25.96

513

Apiales

Apiaceae

Perideridia gairdneri

25.96

514

Ericales

Polemoniaceae

Polemonium carneum

25.91

515

Ericales

Polemoniaceae

Collomia heterophylla

25.82

516

Dipsacales

Caprifoliaceae

Symphoricarpos mollis

25.59

517

Dipsacales

Caprifoliaceae

Symphoricarpos albus

25.59

518

Lamiales

Plantaginaceae

Veronica cusickii

25.55

519

Lamiales

Plantaginaceae

Veronica americana

25.55

520

Lamiales

Plantaginaceae

Synthyris reniformis

25.55

59

521

Lamiales

Plantaginaceae

Synthyris pinnatifida

25.55

522

Caryophyllales

Montiaceae

Lewisia columbiana

25.44

523

Ericales

Ericaceae

Empetrum nigrum

25.39

524

Rosales

Rosaceae

Fragaria vesca

24.94

525

Poales

Juncaceae

Juncus filiformis

24.68

526

Caryophyllales

Caryophyllaceae

Spergularia marina

24.19

527

Alismatales

Potamogetonaceae Potamogeton epihydrus

23.85

528

Lamiales

Phrymaceae

Mimulus tilingii

23.70

529

Lamiales

Phrymaceae

Mimulus dentatus

23.70

530

Rosales

Rosaceae

Fragaria virginiana

23.11

531

Rosales

Rosaceae

Fragaria chiloensis

23.11

532

Ericales

Ericaceae

Pyrola asarifolia

23.07

533

Ericales

Ericaceae

Pyrola minor

23.07

534

Poales

Juncaceae

Luzula parviflora

23.05

535

Gentianales

Rubiaceae

Kelloggia galioides

23.04

536

Alismatales

Potamogetonaceae Potamogeton compressus

22.57

537

Alismatales

Potamogetonaceae Potamogeton berchtoldii

22.57

538

Ericales

Ericaceae

Pyrola picta

22.56

539

Ericales

Ericaceae

Pyrola chlorantha

22.56

540

Ranunculales

Ranunculaceae

Anemone parviflora

22.23

541

Ranunculales

Ranunculaceae

Anemone multifida

22.23

542

Ericales

Polemoniaceae

Collomia linearis

22.22

543

Ericales

Polemoniaceae

Collomia grandiflora

22.22

60

544

Rosales

Rosaceae

Rosa nutkana

22.20

545

Asterales

Asteraceae

Petasites frigidus

22.13

546

Asterales

Asteraceae

Crocidium multicaule

22.13

547

Rosales

Rosaceae

Rosa pisocarpa

21.79

548

Rosales

Rosaceae

Rosa gymnocarpa

21.79

549

Asterales

Asteraceae

Anaphalis margaritacea

21.68

550

Alismatales

Potamogetonaceae Potamogeton gramineus

21.60

551

Poales

Juncaceae

Juncus supiniformis

21.31

552

Poales

Juncaceae

Juncus saximontanus

21.31

553

Poales

Juncaceae

Juncus orthophyllus

21.31

554

Poales

Juncaceae

Juncus mertensianus

21.31

555

Poales

Juncaceae

Juncus acuminatus

21.31

556

Ericales

Polemoniaceae

Polemonium pulcherrimum

21.05

557

Ericales

Polemoniaceae

Polemonium californicum

21.05

558

Alismatales

Potamogetonaceae Potamogeton robbinsii

20.80

559

Alismatales

Potamogetonaceae Potamogeton richardsonii

20.80

560

Myrtales

Onagraceae

Epilobium ciliatum

20.52

561

Myrtales

Onagraceae

Epilobium minutum

20.40

562

Poales

Cyperaceae

Carex utriculata

20.22

563

Poales

Cyperaceae

Carex stylosa

20.22

564

Poales

Cyperaceae

Carex spectabilis

20.22

565

Poales

Cyperaceae

Carex scirpiformis

20.22

566

Poales

Cyperaceae

Carex preslii

20.22

61

567

Poales

Cyperaceae

Carex pluriflora

20.22

568

Poales

Cyperaceae

Carex petasata

20.22

569

Poales

Cyperaceae

Carex obnupta

20.22

570

Poales

Cyperaceae

Carex nigricans

20.22

571

Poales

Cyperaceae

Carex neurophora

20.22

572

Poales

Cyperaceae

Carex multimoda

20.22

573

Poales

Cyperaceae

Carex lenticularis

20.22

574

Poales

Cyperaceae

Carex interrupta

20.22

575

Poales

Cyperaceae

Carex inops

20.22

576

Poales

Cyperaceae

Carex hendersonii

20.22

577

Poales

Cyperaceae

Carex exsiccata

20.22

578

Poales

Cyperaceae

Carex engelmanii

20.22

579

Poales

Cyperaceae

Carex circinnata

20.22

580

Poales

Cyperaceae

Carex californica

20.22

581

Poales

Cyperaceae

Carex athrostachya

20.22

582

Poales

Cyperaceae

Carex arctiformis

20.22

583

Poales

Cyperaceae

Carex aperta

20.22

584

Poales

Cyperaceae

Carex albonigra

20.22

585

Poales

Cyperaceae

Carex ablata

20.22

586

Caryophyllales

Montiaceae

Claytonia exigua

20.09

587

Caryophyllales

Montiaceae

Claytonia cordifolia

20.09

588

Liliales

Liliaceae

Erythronium montanum

19.92

589

Liliales

Liliaceae

Erythronium grandiflorum

19.92

62

590

Liliales

Liliaceae

Erythronium revolutum

19.91

591

Liliales

Liliaceae

Erythronium oregonum

19.91

592

Asterales

Asteraceae

Cirsium arvense

19.79

593

Lamiales

Lentibulariaceae

Utricularia minor

19.53

594

Rosales

Rosaceae

Sorbus scopulina

19.24

595

Boraginales

Boraginaceae

Nemophila parviflora

19.08

596

Boraginales

Boraginaceae

Hydrophyllum tenuipes

19.08

597

Apiales

Apiaceae

Osmorhiza depauperata

19.07

598

Apiales

Apiaceae

Osmorhiza berteroi

19.07

599

Ericales

Ericaceae

Gaultheria shallon

18.94

600

Ericales

Ericaceae

Gaultheria ovatifolia

18.94

601

Boraginales

Boraginaceae

Phacelia nemoralis

18.81

602

Myrtales

Onagraceae

Epilobium anagallidifolium

18.74

603

Ranunculales

Ranunculaceae

Ranunculus uncinatus

18.52

604

Ranunculales

Ranunculaceae

Ranunculus flammula

18.52

605

Asterales

Asteraceae

Adenocaulon bicolor

18.31

606

Lamiales

Lentibulariaceae

Utricularia vulgaris

18.16

607

Lamiales

Lentibulariaceae

Utricularia intermedia

18.16

608

Gentianales

Rubiaceae

Galium trifidum

18.10

609

Ericales

Ericaceae

Vaccinium uliginosum

17.89

610

Rosales

Rosaceae

Malus fusca

17.69

611

Saxifragales

Saxifragaceae

Tolmiea menziesii

17.57

612

Lamiales

Lamiaceae

Stachys chamissonis

17.49

63

613

Lamiales

Lamiaceae

Marrubium vulgare

17.49

614

Ericales

Ericaceae

Vaccinium ovatum

17.49

615

Fabales

Fabaceae

Acmispon denticulatus

17.48

616

Caryophyllales

Montiaceae

Montia parvifolia

17.41

617

Caryophyllales

Montiaceae

Montia howellii

17.41

618

Caryophyllales

Montiaceae

Montia diffusa

17.41

619

Caryophyllales

Montiaceae

Montia dichotoma

17.41

620

Boraginales

Boraginaceae

Phacelia sericea

17.38

621

Boraginales

Boraginaceae

Phacelia linearis

17.38

622

Myrtales

Onagraceae

Epilobium lactiflorum

17.20

623

Myrtales

Onagraceae

Epilobium hornemannii

17.20

624

Rosales

Rosaceae

Amelanchier alnifolia

17.17

625

Poales

Cyperaceae

Rhynchospora alba

16.98

626

Asterales

Asteraceae

Taraxacum officinale

16.92

627

Asterales

Asteraceae

Agoseris elata

16.92

628

Fabales

Fabaceae

Vicia nigricans

16.77

629

Fabales

Fabaceae

Vicia americana

16.77

630

Fabales

Fabaceae

Acmispon parviflorus

16.70

631

Fabales

Fabaceae

Acmispon americanus

16.70

632

Gentianales

Rubiaceae

Galium aparine

16.68

633

Gentianales

Rubiaceae

Galium triflorum

16.68

634

Lamiales

Phrymaceae

Mimulus alsinoides

16.60

635

Ericales

Ericaceae

Rhododendron macrophyllum

16.49

64

636

Poales

Juncaceae

Luzula spicata

16.34

637

Poales

Juncaceae

Juncus parryi

16.16

638

Poales

Juncaceae

Juncus drummondii

16.16

639

Lamiales

Lamiaceae

Mentha arvensis

16.14

640

Lamiales

Orobanchaceae

Castilleja miniata

15.85

641

Lamiales

Orobanchaceae

Triphysaria pusilla

15.85

642

Caryophyllales

Caryophyllaceae

Honckenya peploides

15.83

643

Lamiales

Phrymaceae

Mimulus moschatus

15.47

644

Lamiales

Phrymaceae

Mimulus guttatus

15.47

645

Ranunculales

Ranunculaceae

Ranunculus eschscholtzii

15.40

646

Ericales

Ericaceae

Menziesia ferruginea

15.38

647

Ericales

Ericaceae

Rhododendron albiflorum

15.38

648

Gentianales

Rubiaceae

Galium boreale

15.35

649

Gentianales

Rubiaceae

Galium bifolium

15.35

650

Apiales

Apiaceae

Conioselinum vaginatum

15.14

651

Caryophyllales

Caryophyllaceae

Cerastium glomeratum

15.13

652

Lamiales

Orobanchaceae

Pedicularis racemosa

15.08

653

Lamiales

Orobanchaceae

Pedicularis groenlandica

15.08

654

Ranunculales

Ranunculaceae

Ranunculus trichophyllus

15.05

655

Ranunculales

Ranunculaceae

Ranunculus aquatilis

15.05

656

Lamiales

Lamiaceae

Lycopus uniflorus

15.02

657

Lamiales

Lamiaceae

Prunella vulgaris

15.02

658

Poales

Poaceae

Phragmites australis

15.02

65

659

Lamiales

Phrymaceae

Mimulus primuloides

14.94

660

Saxifragales

Saxifragaceae

Boykinia intermedia

14.59

661

Brassicales

Brassicaceae

Subularia aquatica

14.52

662

Lamiales

Plantaginaceae

Hippuris vulgaris

14.49

663

Rosales

Rosaceae

Crataegus suksdorfii

14.28

664

Rosales

Rosaceae

Crataegus douglasii

14.28

665

Saxifragales

Saxifragaceae

Tiarella trifoliata

14.26

666

Saxifragales

Saxifragaceae

Elmera racemosa

14.26

667

Poales

Juncaceae

Juncus canadensis

14.16

668

Poales

Juncaceae

Juncus bolanderi

14.16

669

Poales

Juncaceae

Juncus tenuis

14.16

670

Poales

Juncaceae

Juncus bufonius

14.16

671

Caryophyllales

Caryophyllaceae

Minuartia rubella

14.09

672

Saxifragales

Saxifragaceae

Tellima grandiflora

14.02

673

Saxifragales

Saxifragaceae

Heuchera micrantha

14.02

674

Poales

Cyperaceae

Dulichium arundinaceum

13.78

675

Brassicales

Brassicaceae

Smelowskia calycina

13.65

676

Brassicales

Brassicaceae

Rorippa curvisiliqua

13.65

677

Ericales

Ericaceae

Elliottia pyroliflora

13.54

678

Lamiales

Phrymaceae

Mimulus breweri

13.49

679

Lamiales

Phrymaceae

Mimulus lewisii

13.49

680

Poales

Poaceae

Panicum capillare

13.47

681

Fabales

Fabaceae

Lupinus arcticus

13.40

66

682

Fabales

Fabaceae

Lupinus rivularis

13.35

683

Fabales

Fabaceae

Lupinus lepidus

13.32

684

Fabales

Fabaceae

Lupinus polyphyllus

13.27

685

Fabales

Fabaceae

Lupinus latifolius

13.27

686

Poales

Juncaceae

Juncus effusus

13.23

687

Poales

Juncaceae

Juncus conglomeratus

13.23

688

Poales

Juncaceae

Luzula congesta

12.96

689

Poales

Juncaceae

Luzula campestris

12.96

690

Caryophyllales

Portulacaceae

Calandrinia ciliata

12.85

691

Poales

Cyperaceae

Schoenoplectus

12.54

tabernaemontani
692

Poales

Cyperaceae

Isolepis cernua

12.54

693

Poales

Juncaceae

Juncus articulatus

12.50

694

Caryophyllales

Caryophyllaceae

Stellaria longipes

12.34

695

Caryophyllales

Caryophyllaceae

Stellaria borealis

12.34

696

Brassicales

Brassicaceae

Barbarea orthoceras

12.33

697

Apiales

Apiaceae

Angelica lucida

12.10

698

Poales

Cyperaceae

Trichophorum cespitosum

12.05

699

Fabales

Fabaceae

Lathyrus palustris

11.89

700

Lamiales

Plantaginaceae

Collinsia parviflora

11.83

701

Lamiales

Plantaginaceae

Collinsia grandiflora

11.83

702

Caryophyllales

Montiaceae

Lewisia pygmaea

11.72

703

Fabales

Fabaceae

Lathyrus nevadensis

11.63

67

704

Fabales

Fabaceae

Lathyrus japonicus

11.63

705

Caryophyllales

Caryophyllaceae

Sagina saginoides

11.56

706

Caryophyllales

Caryophyllaceae

Sagina decumbens

11.56

707

Fabales

Fabaceae

Trifolium longipes

11.56

708

Caryophyllales

Caryophyllaceae

Cerastium semidecandrum

11.41

709

Caryophyllales

Caryophyllaceae

Cerastium arvense

11.41

710

Apiales

Apiaceae

Glehnia littoralis

11.41

711

Apiales

Apiaceae

Angelica arguta

11.41

712

Asterales

Asteraceae

Eriophyllum lanatum

11.26

713

Asterales

Asteraceae

Microseris borealis

11.14

714

Ericales

Ericaceae

Vaccinium parvifolium

11.10

715

Lamiales

Plantaginaceae

Plantago maritima

11.09

716

Lamiales

Plantaginaceae

Digitalis purpurea

11.09

717

Fabales

Fabaceae

Trifolium cyathiferum

11.03

718

Brassicales

Brassicaceae

Cardamine pensylvanica

11.00

719

Fabales

Fabaceae

Trifolium oliganthum

11.00

720

Fabales

Fabaceae

Trifolium microcephalum

11.00

721

Caryophyllales

Caryophyllaceae

Silene antirrhina

10.98

722

Caryophyllales

Caryophyllaceae

Silene acaulis

10.98

723

Ericales

Ericaceae

Vaccinium ovalifolium

10.97

724

Ericales

Ericaceae

Kalmia polifolia

10.97

725

Ericales

Ericaceae

Kalmia microphylla

10.97

726

Apiales

Apiaceae

Lomatium dissectum

10.94

68

727

Apiales

Apiaceae

Lomatium nudicaule

10.94

728

Ericales

Ericaceae

Phyllodoce glanduliflora

10.90

729

Ericales

Ericaceae

Phyllodoce empetriformis

10.90

730

Lamiales

Plantaginaceae

Nothochelone nemorosa

10.86

731

Ericales

Ericaceae

Vaccinium membranaceum

10.73

732

Ericales

Ericaceae

Vaccinium deliciosum

10.73

733

Lamiales

Plantaginaceae

Callitriche palustris

10.70

734

Poales

Poaceae

Distichlis spicata

10.46

735

Brassicales

Brassicaceae

Athysanus pusillus

10.39

736

Brassicales

Brassicaceae

Arabis hirsuta

10.39

737

Lamiales

Plantaginaceae

Callitriche stagnalis

10.24

738

Poales

Juncaceae

Juncus covillei

10.19

739

Poales

Juncaceae

Juncus balticus

10.19

740

Lamiales

Plantaginaceae

Callitriche heterophylla

10.13

741

Lamiales

Plantaginaceae

Callitriche hermaphroditica

10.13

742

Asterales

Asteraceae

Arnica longifolia

10.12

743

Caryophyllales

Caryophyllaceae

Silene scouleri

10.03

744

Asterales

Asteraceae

Madia sativa

9.95

745

Asterales

Asteraceae

Arnica mollis

9.95

746

Asterales

Asteraceae

Arnica cordifolia

9.87

747

Asterales

Asteraceae

Arnica latifolia

9.87

748

Asterales

Asteraceae

Achillea millefolium

9.81

749

Poales

Juncaceae

Juncus nevadensis

9.80

69

750

Poales

Juncaceae

Juncus ensifolius

9.80

751

Poales

Poaceae

Glyceria striata

9.71

752

Caryophyllales

Caryophyllaceae

Silene parryi

9.64

753

Caryophyllales

Caryophyllaceae

Silene douglasii

9.64

754

Asterales

Asteraceae

Agoseris aurantiaca

9.63

755

Lamiales

Montiaceae

Claytonia lanceolata

9.61

756

Brassicales

Brassicaceae

Cardamine oligosperma

9.56

757

Asterales

Asteraceae

Agoseris heterophylla

9.54

758

Asterales

Asteraceae

Agoseris grandiflora

9.54

759

Lamiales

Lamiaceae

Claytonia sibirica

9.43

760

Lamiales

Lamiaceae

Claytonia perfoliata

9.43

761

Caryophyllales

Montiaceae

Montia linearis

9.25

762

Brassicales

Brassicaceae

Turritis glabra

9.25

763

Lamiales

Plantaginaceae

Penstemon davidsonii

9.01

764

Lamiales

Plantaginaceae

Veronica serpyllifolia

8.73

765

Lamiales

Plantaginaceae

Veronica peregrina

8.73

766

Caryophyllales

Montiaceae

Montia fontana

8.70

767

Caryophyllales

Montiaceae

Montia chamissoi

8.70

768

Brassicales

Brassicaceae

Cardamine breweri

8.68

769

Lamiales

Plantaginaceae

Penstemon ovatus

8.62

770

Lamiales

Plantaginaceae

Penstemon serrulatus

8.62

771

Poales

Cyperaceae

Eleocharis acicularis

8.59

772

Asterales

Asteraceae

Artemisia arctica

8.50

70

773

Lamiales

Plantaginaceae

Veronica wormskjoldii

8.47

774

Lamiales

Plantaginaceae

Veronica scutellata

8.47

775

Brassicales

Brassicaceae

Cardamine bellidifolia

8.40

776

Brassicales

Brassicaceae

Rorippa palustris

8.40

777

Brassicales

Brassicaceae

Thysanocarpus curvipes

8.19

778

Poales

Cyperaceae

Carex aquatilis

8.02

779

Poales

Cyperaceae

Eleocharis palustris

7.95

780

Poales

Cyperaceae

Eleocharis ovata

7.95

781

Asterales

Asteraceae

Tanacetum bipinnatum

7.69

782

Brassicales

Brassicaceae

Thlaspi montanum

7.56

783

Asterales

Asteraceae

Artemisia ludoviciana

7.54

784

Brassicales

Brassicaceae

Erysimum capitatum

7.38

785

Brassicales

Brassicaceae

Erysimum asperum

7.38

786

Brassicales

Brassicaceae

Boechera stricta

7.36

787

Brassicales

Brassicaceae

Boechera lyallii

7.36

788

Asterales

Asteraceae

Artemisia tilesii

7.20

789

Asterales

Asteraceae

Artemisia campestris

7.20

790

Poales

Poaceae

Danthonia intermedia

7.13

791

Poales

Poaceae

Danthonia spicata

6.88

792

Poales

Poaceae

Danthonia californica

6.88

793

Poales

Cyperaceae

Carex rossii

6.85

794

Poales

Cyperaceae

Scirpus microcarpus

6.82

795

Poales

Cyperaceae

Carex raynoldsii

6.55

71

796

Poales

Cyperaceae

Carex buxbaumii

6.55

797

Asterales

Asteraceae

Eurybia radulina

6.54

798

Asterales

Asteraceae

Canadanthus modestus

6.47

799

Poales

Cyperaceae

Eriophorum chamissonis

6.31

800

Poales

Cyperaceae

Eriophorum angustifolium

6.31

801

Poales

Cyperaceae

Carex viridula

6.24

802

Poales

Poaceae

Bromus carinatus

6.19

803

Brassicales

Brassicaceae

Draba nemorosa

5.99

804

Poales

Poaceae

Elymus glaucus

5.84

805

Poales

Poaceae

Hordeum brachyantherum

5.84

806

Poales

Poaceae

Leymus mollis

5.81

807

Poales

Poaceae

Elymus elymoides

5.81

808

Brassicales

Brassicaceae

Draba cana

5.79

809

Brassicales

Brassicaceae

Draba crassifolia

5.75

810

Brassicales

Brassicaceae

Draba albertina

5.75

811

Brassicales

Brassicaceae

Draba praealta

5.73

812

Brassicales

Brassicaceae

Draba incerta

5.73

813

Poales

Cyperaceae

Carex amplifolia

5.71

814

Asterales

Asteraceae

Erigeron compositus

5.62

815

Asterales

Asteraceae

Symphyotrichum foliaceum

5.61

816

Asterales

Asteraceae

Symphyotrichum subspicatum

5.61

817

Poales

Cyperaceae

Carex macrocephala

5.24

818

Asterales

Asteraceae

Erigeron philadelphicus

5.24

72

819

Poales

Cyperaceae

Carex livida

5.21

820

Poales

Cyperaceae

Carex aurea

5.21

821

Asterales

Asteraceae

Erigeron acris

5.10

822

Asterales

Asteraceae

Erigeron subtrinervis

5.06

823

Asterales

Asteraceae

Erigeron speciosus

5.06

824

Poales

Cyperaceae

Carex mertensii

4.91

825

Poales

Cyperaceae

Carex lyngbyei

4.91

826

Poales

Cyperaceae

Carex anthoxanthea

4.73

827

Poales

Cyperaceae

Carex pyrenaica

4.66

828

Poales

Cyperaceae

Carex pauciflora

4.66

829

Poales

Cyperaceae

Carex obtusata

4.53

830

Poales

Cyperaceae

Carex nardina

4.48

831

Poales

Cyperaceae

Carex leptalea

4.48

832

Poales

Poaceae

Phleum alpinum

4.41

833

Poales

Cyperaceae

Carex deweyana

4.31

834

Poales

Poaceae

Cinna latifolia

4.29

835

Poales

Cyperaceae

Carex vesicaria

4.16

836

Poales

Cyperaceae

Carex saxatilis

4.16

837

Poales

Poaceae

Trisetum spicatum

4.12

838

Poales

Poaceae

Torreyochloa pallida

4.01

839

Poales

Poaceae

Anthoxanthum odoratum

3.98

840

Poales

Poaceae

Deschampsia elongata

3.93

841

Poales

Poaceae

Poa cusickii

3.91

73

842

Poales

Poaceae

Poa arctica

3.91

843

Poales

Poaceae

Alopecurus geniculatus

3.73

844

Poales

Poaceae

Alopecurus aequalis

3.73

845

Poales

Poaceae

Deschampsia danthonioides

3.67

846

Poales

Poaceae

Deschampsia cespitosa

3.67

847

Poales

Poaceae

Vulpia microstachys

3.62

848

Poales

Cyperaceae

Carex disperma

3.58

849

Poales

Cyperaceae

Carex stipata

3.56

850

Poales

Cyperaceae

Carex illota

3.48

851

Poales

Poaceae

Festuca occidentalis

3.43

852

Poales

Poaceae

Festuca idahoensis

3.43

853

Poales

Poaceae

Vulpia bromoides

3.43

854

Poales

Poaceae

Festuca rubra

3.43

855

Poales

Poaceae

Carex leporina

3.43

856

Poales

Poaceae

Calamagrostis purpurascens

3.42

857

Poales

Poaceae

Calamagrostis canadensis

3.42

858

Poales

Poaceae

Agrostis exarata

3.33

859

Poales

Poaceae

Agrostis scabra

3.30

860

Poales

Poaceae

Agrostis capillaris

3.30

861

Poales

Cyperaceae

Carex tumulicola

3.26

862

Poales

Cyperaceae

Carex hoodii

3.26

863

Poales

Cyperaceae

Carex laeviculmis

3.24

864

Poales

Cyperaceae

Carex arcta

3.24

74

865

Poales

Cyperaceae

Carex pansa

3.19

866

Poales

Cyperaceae

Carex cusickii

3.19

867

Poales

Cyperaceae

Carex interior

3.17

868

Poales

Cyperaceae

Carex echinata

3.17

869

Poales

Cyperaceae

Carex microptera

2.98

870

Poales

Cyperaceae

Carex praticola

2.91

871

Poales

Cyperaceae

Carex phaeocephala

2.91

75

Appendix B
Angiosperms found within Olympic National Park and the Special Plants List (2019) ranked by
RED-E score (Washington Department of Natural Resources Natural Heritage Program, 2019).
RED-E scores are rounded to two decimal places, and differences in ranks represent actual
differences in RED-E scores.

Rank Scientific Name

NatureServe
Rank

ED
Score

RED-E
Score

1

Arcteranthis cooleyae (Ranunculus
cooleyae)

S1

106.79

7.45

2

Whipplea modesta

S1

64.98

6.96

3

Coptis aspleniifolia

S2

106.79

6.76

4

Oxytropis borealis var. viscida

S1S2

70.84

6.70

5

Abronia umbellata var. acutalata
(Abronia umbellata ssp. breviflora)

S1

47.39

6.65

6

Cochlearia groenlandica

S1S2

62.6

6.58

7

Micranthes tischii (Saxifraga
tischii)

S1?

43.73

6.57

8

Sparganium fluctuans

S1

40.89

6.51

9

Dryas drummondii var. drummondii

S2

82.49

6.50

10

Epilobium mirabile (E. glandulosum
var. macounii)

S1

38.38

6.44

11

Dodecatheon austrofrigidum

S1

36.37

6.39

12

Potentilla breweri (P. drummondii
ssp. b)

S1

35.62

6.37

13

Hedysarum occidentale

S2

70.84

6.35

14

Chrysolepis chrysophylla var.
chrysophylla

S2

70.11

6.34

15

Synthyris schizantha

S1

33.48

6.31

16

Sanguisorba menziesii

S2

62.71

6.23

17

Parnassia palustris

S2

52.08

6.05

18

Astragalus microcystis

S2

47.79

5.96

19

Astragalus australis var. cottonii

S2

47.79

5.96

20

Eurybia merita

S2

46.86

5.95

76

21

Arabis olympica (A. furcata var.
olympica)

S2

42.38

5.85

22

Carex circinnata

S1

20.22

5.83

23

Plantago macrocarpa

S2

33.48

5.62

24

Oxytropis campestris var. gracilis
(O. monticola)

S2

31.42

5.56

25

Erigeron peregrinus var.
thompsonii

S2

31.61

5.56

26

Erigeron aliceae

S2

31.61

5.56

27

Gentiana douglasiana

S2

27.50

5.43

28

Polemonium carneum

S2

25.91

5.37

29

Montia diffusa

S1S2

17.41

5.34

30

Claytonia multiscapa var. pacifica
(Claytonia lanceolata var.
multiscapa)

S1

9.61

5.13

31

Carex stylosa

S2

20.22

5.13

32

Actaea elata var. elata (Cimicifuga
elata)

S3

37.21

5.03

33

Draba cana

S1

5.79

4.69

34

Utricularia intermedia

S2S3

18.16

4.68

35

Synthyris lanuginosa

S3?

25.55

4.66

36

Microseris borealis

S2

11.14

4.57

37

Carex anthoxanthea

S1

4.73

4.52

38

Erythronium revolutum

S3

19.91

4.42

39

Carex pauciflora

S2

4.66

3.81

40

Carex obstusata

S2

4.53

3.79

77

Appendix C
Code used to calculate ED scores in R.

#Load R packages
>library(picante)
#Load phylogeny
>olymztree <- read.tree(file= “olymzanne.txt”)
#Calculate ED for Olympic National Park angiosperms
>olymzed <- evol.distinct(olymztree, type =c(“fair.proportion”),
scale = FALSE, use.branch.lengths = TRUE)
#Print to .csv file
write.csv(olymzed, ‘olymzed.csv’)

78

Appendix D
Code used to calculate RED-E scores in R.
#Load ED scores and RE scores into R
>edspecial<-read.csv(“edspecial.csv”, header=TRUE)
#Create a function to calculate RED-E scores
>rede <-function(x,y){return((log(1+x))+(y*(log(2))))}
#Name variables and run function
>x<-edspecial$EDScore

>y<-edspecial$REScore
>redespecial <-rede(x,y)
#Print to .csv file
>write.csv(redespecial, “redespecial.csv”)

79