Trokan_mjMES2010.pdf

Media

Part of Ecological Restoration: Sustaining Diversity On the South Puget Sound Prairie Landscape

extracted text
 

 


 
Ecological
 Restoration:
 
Sustaining
 Diversity
 On
 the
 
 
South
 Puget
 Sound
 Prairie
 Landscape
 
 


 

 

 

 

 

 

 

 

 

By
 
Matthew
 J.
 Trokan
 


 

 

 

 

 

 

 

 

 

 

 

 


 

 


 

 

A
 Thesis
 
Submitted
 in
 partial
 fulfillment
 
Of
 the
 requirements
 for
 the
 degree
 Master
 of
 Environmental
 Study
 
The
 Evergreen
 State
 College
 
December
 2009
 

Page
 1
 


 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©
 2010
 by
 Matthew
 J.
 Trokan.
 All
 rights
 reserved.
 


 

 

 


 

 

 

Page
 2
 


 

 

This
 Thesis
 for
 the
 Master
 of
 Environmental
 Study
 Degree
 
By
 
Matthew
 J.
 Trokan
 
Has
 been
 approved
 for
 
The
 Evergreen
 State
 College
 
By
 

 

 

 

 

 
________________________________
 

Frederica
 Bowcutt
 

Member
 of
 the
 Faculty
 of
 
The
 Evergreen
 State
 College
 

 

 
_____________________________
 
Martha
 Henderson
 


 

Member
 of
 the
 Faculty
 of
 
The
 Evergreen
 State
 College
 

 

 

 
_____________________________
 
Eric
 Delvin
 
 
Community
 Conservation
 Coordinator
 
The
 Nature
 Conservancy
 Washington
 

 
_______________________
 
Date
 


 

 


 

 

Page
 3
 


 

 

Abstract
 


 

Ecological
 Restoration;
 
Sustaining
 Diversity
 on
 the
 
South
 Puget
 Sound
 Prairie
 Landscape
 

Anthropogenic
 climate
 change
 is
 unequivocal
 and
 unavoidable;
 the
 average
 global
 
temperature
 has
 increased
 over
 the
 past
 century
 and
 will
 continue
 to
 rise
 an
 additional
 1.1
 to
 
6.4
 degrees
 Celsius
 by
 2100.
 
 Climate
 is
 one
 of
 the
 most
 significant
 factors
 determining
 the
 
geographic
 distribution
 of
 species
 and
 ecological
 communities.
 As
 the
 climate
 changes
 species
 
will
 persist
 through
 adaptation,
 migration
 to
 new
 regions,
 or
 go
 extinct.
 
 Unlike
 animals,
 plants
 
that
 cannot
 readily
 migrate
 to
 a
 new
 location
 will
 be
 particularly
 challenged
 by
 climate
 change.
 
 
 
Climate
 change
 is
 causing
 a
 sorting
 of
 vegetation
 into
 bands
 along
 migration
 fronts,
 led
 
by
 the
 fastest
 (most
 invasive)
 dispersers
 and
 trailed
 by
 the
 slowest
 (least
 invasive),
 which
 are
 
perhaps
 at
 the
 greatest
 risk
 of
 local
 extinction
 (Neilson
 et
 al.,
 2005).
 Plant
 communities
 will
 
increasingly
 become
 composed
 of
 species
 that
 exhibit
 high
 phenotypic
 placidity,
 fecundity
 and
 
the
 ability
 to
 disperse
 over
 long
 distances
 (Malcom
 and
 Pitelka,
 2000).
 
 
 It
 is
 widely
 believed
 
that
 climate
 change
 will
 necessitate
 the
 adaptation
 of
 restoration
 and
 conservation
 practices,
 
yet
 there
 is
 a
 lack
 of
 research
 and
 data
 for
 practitioners
 to
 act
 upon.
 
 In
 order
 to
 better
 
understand
 the
 affect
 climate
 change
 will
 have
 on
 restoration
 practice,
 I
 utilized
 the
 south
 
Puget
 Sound
 prairies
 in
 western
 Washington
 as
 a
 case
 study.
 
 Conclusions
 are
 based
 upon
 the
 
scientific
 literature
 including
 journal
 articles
 reporting
 climate
 change
 projections
 based
 on
 
computer
 models.
 The
 author
 also
 generated
 original
 data
 through
 structured
 interviews
 of
 
south
 Puget
 Sound
 prairie
 restoration
 practitioners
 to
 determine
 what
 if
 any
 changes
 they
 were
 
making
 to
 their
 approach.
 I
 also
 explored
 the
 adaptations
 practitioners
 anticipate
 over
 the
 
coming
 century.
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The
 Idaho-­‐fescue
 bunchgrass
 prairies
 of
 the
 south
 Puget
 Sound
 are
 one
 of
 the
 most
 
imperiled
 ecosystems
 on
 the
 planet.
 
 Prairie
 plant
 species
 were
 and
 still
 are
 culturally
 valued
 by
 
the
 Salish
 tribes
 who
 maintained
 prairies
 through
 fire
 and
 harvesting
 practices
 as
 the
 climate
 
changed
 during
 the
 late
 Holocene.
 
 European
 settlers
 valued
 the
 clear
 flat
 prairie
 landscape
 for
 
agriculture
 and
 development,
 which
 led
 to
 its
 degradation
 through
 fragmentation,
 fire
 
suppression
 and
 the
 introduction
 of
 invasive
 species.
 
 Currently,
 a
 myriad
 of
 Federal,
 State,
 
local
 and
 non-­‐profit
 groups
 which
 value
 diversity
 have
 committed
 to
 restoring
 and
 preserving
 
the
 prairie
 ecosystem.
 
 Climate
 change
 is
 expected
 to
 exacerbate
 the
 current
 challenges
 to
 
prairie
 restoration
 and
 conservation
 and
 is
 prompting
 practitioners
 to
 redefine
 historical
 
targets.
 
 The
 actions
 of
 restoration
 practitioners
 in
 the
 south
 Puget
 Sound
 might
 be
 indicative
 of
 
how
 the
 entire
 field
 of
 restoration
 is
 responding
 to
 climate
 change.
 
 
 
 
 
 
 
 
 
 
 

 


 

 

Page
 4
 


 

 

Table
 of
 Contents
 

 
Puget
 Trough
 Prairies;
 The
 case
 for
 a
 case
 study……………………………………………………….....1
 

 
I.

 

 

 

 

 

 

Natural
 History
 of
 Puget
 Trough
 Prairies;
 Ice,
 Fire
 &
 Management………………..…..4
 

 

 

 

 

 

II.

 

 

Paleo-­‐ecological
 history
 
Cultural
 Landscape
 

 
Fire
 

 
Harvesting
 Practices
 
Pestilence
 on
 the
 Prairie
 


 Degradation
 and
 Fragmentation………………………………………………………………………....17
 

 

 

III.

IV.

V.

Settlement
 
Farming,
 Fire
 Suppression
 &
 Population
 Growth
 
Invasive
 Species
 

 
Climate
 Change……………………………………………………………………………………….…….……..25
 
General
 Circulation
 Modeling
 
Pacific
 Northwest
 
Range
 Movement
 

 
Ecological
 Restoration
 in
 a
 Warming
 World……….…………………………….…………..……...35
 

 
Restoration
 Techniques
 

 
Migration;
 connecting
 the
 islands
 in
 a
 sea
 of
 change
 

 
What
 does
 “native”
 mean
 anyways?
 

 
Conclusion..………………………………………………………………………………………………..............56
 


 
Tables
 and
 Appendixes…………………………………………………………………….…………………….………...59
 
Work
 Cited……………………………………………………………………………….…………………………………..…...64
 


 

 

Page
 5
 


 

 

Puget
 Trough
 Prairies:
 the
 case
 for
 a
 case
 study
 
Scientific
 evidence
 confirms
 that
 the
 composition
 of
 the
 Earth’s
 atmosphere
 and
 climate
 
has
 changed
 over
 the
 last
 250
 years.
 
 Amounts
 of
 greenhouse
 gases
 (GHG)
 are
 increasing
 as
 a
 
result
 of
 industrialized
 human
 activities—since
 1750,
 carbon
 dioxide
 has
 increased
 32%,
 and
 
methane
 has
 increased
 150%
 (Climate
 Impacts
 Group,
 2010).
 The
 changing
 of
 the
 climate
 
system
 is
 unequivocal,
 as
 is
 now
 evident
 from
 observed
 increases
 in
 global
 average
 
temperatures,
 widespread
 melting
 of
 glaciers,
 and
 rising
 global
 average
 sea
 level
 (IPCC,
 2007).
 
In
 the
 absence
 of
 significant
 changes
 in
 human
 activities,
 atmospheric
 concentrations
 of
 GHG’s
 
have
 continued
 to
 increase.
 
 Even
 if
 major
 global
 action
 reduced
 emissions
 significantly,
 the
 
thermal
 inertia
 of
 the
 oceans
 will
 continue
 to
 drive
 climatic
 change
 for
 decades
 and
 will
 require
 
adaptive
 responses
 to
 maintain
 biodiversity
 (Heller
 and
 Zavaleta,
 2008).
 
 While
 people
 and
 
animals
 may
 be
 able
 to
 adapt
 to
 climatic
 changes
 rather
 quickly,
 plant
 communities
 have
 been
 
slower
 to
 respond
 to
 past
 climate
 changes.
 
 
 
 
 
 
 
As
 the
 climate
 changes
 plants
 will
 persist,
 adapt
 or
 migrate
 according
 to
 their
 life
 history
 
characteristics.
 Climate
 is
 one
 of
 three
 main
 abiotic
 factors
 that
 determine
 the
 floristic
 
composition
 of
 a
 region
 (Radosevich
 et
 al.,
 2003).
 
 The
 climate
 change
 predicted
 to
 occur
 over
 
the
 next
 century
 will
 influence
 plant
 populations
 through
 several
 factors:
 changes
 in
 range
 and
 
means
 of
 temperature,
 increased
 disturbances,
 as
 well
 as,
 water,
 carbon
 dioxide
 and
 nitrogen
 
availability
 (Drake
 et
 al.,
 2003).
 Anthropogenic
 climate
 change
 may
 occur
 at
 a
 rate
 greater
 than
 
any
 experienced
 in
 the
 past
 10,000
 years
 (Houghton
 et
 al.,
 2001).
 
 Ecosystem
 simulations
 of
 
future
 climate
 scenarios
 suggest
 that
 the
 preferred
 range
 of
 many
 species
 could
 shift
 tens
 to
 
hundreds
 of
 kilometers
 over
 only
 50-­‐100
 years
 (Neilson
 et
 al.,
 2005).
 
 Climate
 change
 is
 


 

 

Page
 6
 


 

 

expected
 to
 become
 the
 first
 or
 second
 greatest
 driver
 of
 global
 biodiversity
 loss
 (Heller
 and
 
Zavaleta,
 2008)
 and
 it
 is
 very
 likely
 that
 20-­‐30%
 of
 the
 planet’s
 flora
 that
 cannot
 readily
 adapt
 to
 
climate
 change
 will
 expire
 (IPCC,
 2007).
 
 
 Restoration
 and
 conservation
 practitioners
 have
 
struggled
 with
 how
 to
 adapt
 practices
 with
 on-­‐going
 climate
 change
 in
 order
 to
 protect
 the
 
biodiversity
 and
 ecosystem
 functioning
 which
 our
 society
 values
 (Heller
 and
 Zavaleta,
 2008).
 
 
Over
 the
 last
 22
 years,
 widespread
 calls
 to
 action
 and
 recommendations
 throughout
 the
 
scientific
 literature
 have
 been
 reiterated
 frequently
 but
 without
 the
 elaboration
 or
 specificity
 
necessary
 to
 act
 on
 the
 site
 level
 (Heller
 and
 Zavaleta,
 2008).
 There
 is
 little
 guidance
 for
 how
 
specific
 communities
 and
 ecosystems
 should
 be
 created,
 restored
 and
 managed
 in
 a
 manner
 
that
 anticipates
 the
 development
 of
 future
 species
 assemblages
 (Seastedt
 et
 al.,
 2008).
 
 Despite
 
uncertainties
 it
 would
 be
 fallacious
 to
 adhere
 blindly
 to
 a
 rigid
 creed
 of
 historic
 conditions,
 and
 
fail
 to
 recognize
 that
 a
 new
 world
 of
 altered
 climates
 is
 hard
 upon
 us
 (Seastedt
 et
 al.,
 2008).
 
 
Indeed,
 practicing
 restoration
 in
 a
 warming
 world
 involves
 a
 paradigm
 shift
 as
 restoration
 and
 
conservation
 practitioners
 re-­‐examine
 historical
 targets
 in
 light
 of
 a
 deepening
 ecological
 
understanding
 of
 the
 relationship
 between
 the
 climate
 and
 ecosystem
 composition.
 
 
 
In
 order
 to
 further
 understand
 how
 the
 field
 of
 restoration
 will
 be
 affected
 by
 climate
 
change,
 I
 examined
 on-­‐going
 restoration
 efforts
 of
 bunchgrass
 prairie
 and
 oak
 woodland
 on
 the
 
south
 Puget
 Sound
 landscape.
 
 South
 Puget
 Sound
 prairies
 once
 extended
 over
 150,000
 acres
 
on
 shallow,
 sandy,
 and
 gravelly
 loam
 soils
 from
 south
 of
 Tacoma
 to
 Oakville
 (Crawford
 and
 Hall,
 
1997).
 
 Prairie
 and
 oak
 woodland
 habitat
 has
 been
 reduced
 by
 90%,
 with
 only
 3%,
 or
 less
 than
 
5,000
 acres
 preserved
 (Crawford
 and
 Hall,
 1997).
 
 Original
 vegetation
 cover
 varies
 from
 80%
 in
 
the
 least
 impacted
 areas
 to
 less
 than
 10%
 in
 heavily
 grazed,
 plowed
 and
 replanted
 areas
 


 

 

Page
 7
 


 

 

(Purcell,
 1987).
 
 
 
 The
 prairies
 are
 a
 seral
 grassland
 community
 which
 if
 not
 maintained
 would
 
become
 invaded
 by
 non-­‐indigenous
 species
 and
 overshadowed
 by
 coniferous
 forest.
 
 There
 are
 
numerous
 State
 and
 Federally
 endangered,
 rare
 or
 threatened
 plants,
 insects,
 birds,
 reptiles,
 
and
 mammals,
 several
 known
 extinctions,
 and
 most
 likely
 numerous
 unknown
 extinctions,
 
indicating
 that
 it
 is
 not
 just
 certain
 species
 which
 are
 endangered
 but
 the
 entire
 bunchgrass
 
prairie
 and
 oak
 woodland
 ecosystem.
 
 There
 are
 several
 on-­‐going
 challenges
 to
 preservation
 
including
 fire
 suppression,
 invasive
 species,
 habitat
 fragmentation
 and
 continued
 development,
 
which
 may
 be
 exacerbated
 under
 future
 climatic
 scenarios.
 
 
 
In
 order
 to
 understand
 current
 restoration
 practices,
 I
 explore
 the
 ecological
 and
 
cultural
 forces
 that
 created
 today’s
 prairie
 landscape.
 
 I
 examine
 general
 circulation
 models
 
which
 project
 possible
 future
 climate
 scenarios.
 
 Finally
 I
 interviewed
 14
 south
 Puget
 Sound
 
prairie
 practitioners
 about
 how
 they
 will
 adapt
 their
 practices
 to
 a
 changing
 climate.
 
 My
 
analysis
 will
 demonstrate
 that
 climate
 change
 is
 already
 affecting
 restoration
 practices
 on
 the
 
south
 Puget
 Sound
 prairie
 landscape.
 
 Due
 to
 the
 lack
 of
 connectivity,
 practitioners
 are
 
beginning
 to
 source
 restoration
 material
 regionally
 and
 adopt
 practices
 to
 facilitate
 the
 
reintroduction
 of
 species.
 
 As
 restoration
 targets
 which
 focus
 on
 recreating
 a
 pre-­‐settlement
 
landscape
 become
 less
 and
 less
 realistic,
 the
 field
 of
 restoration
 is
 utilizing
 an
 ecological
 
perspective
 to
 guide
 restoration
 practice.
 
 While
 the
 challenges
 of
 climate
 change
 are
 great
 the
 
current
 network
 of
 professionals,
 agencies
 and
 organizations
 are
 collaborating
 in
 order
 to
 
increase
 diversity,
 which
 is
 perhaps
 the
 best
 way
 to
 prevent
 disastrous
 ecosystem
 failures
 in
 an
 
increasingly
 disturbed
 warming
 world.
 
 
 
 


 

 

Page
 8
 


 

 

I.
 Natural
 History
 of
 Puget
 Trough
 Prairies;
 Ice,
 Fire
 and
 Management
 
The
 south
 Puget
 Sound
 Prairie
 and
 oak
 woodland
 landscape
 evolved
 at
 a
 time
 when
 the
 
climate
 was
 much
 different
 than
 it
 is
 today.
 
 During
 the
 Pleistocene
 epoch,
 110,000
 years
 ago
 
the
 planet
 began
 a
 cycle
 of
 cooling
 and
 warming
 as
 large
 ice
 sheets
 advanced
 from
 polar
 
regions
 and
 mountain
 tops
 to
 cover
 immense
 expanses
 of
 the
 northern
 hemisphere.
 Around
 
70,000
 yrs.
 B.P.
 the
 Cordilleran
 ice
 sheet
 covered
 the
 majority
 of
 western
 North
 America,
 and
 
stretched
 from
 northern
 Oregon
 all
 the
 way
 to
 the
 Alaskan
 panhandle.
 
 The
 Fraser
 Glaciations
 
refer
 to
 three
 periods
 or
 stades
 of
 advance
 and
 retreat
 between
 20,000
 and
 10,000
 yrs.
 B.P.
 
(Kruckeberg,
 1991).
 
 During
 the
 last
 period,
 or
 Vashon
 Stade,
 ice
 covered
 the
 Puget
 Trough
 as
 
far
 south
 as
 Tenino,
 Washington
 (Kruckeberg,
 1991).
 
 These
 immense
 continental
 ice
 sheets
 
transported
 massive
 amounts
 of
 rock,
 transformed
 waterways
 and
 had
 a
 significant
 impact
 on
 
the
 ecosystems
 of
 western
 Washington.
 
 
 
 
 
 
 
 
 
 
Climate
 is
 one
 of
 the
 main
 abiotic
 factors
 which
 influences
 plant
 distribution
 patterns.
 
 
By
 studying
 vegetational
 communities
 that
 occurred
 in
 the
 past,
 scientists
 are
 able
 to
 
understand
 how
 plant
 species
 might
 react
 to
 current
 anthropogenic
 climate
 change.
 
 
 By
 
utilizing
 pollen
 grains
 trapped
 in
 wetland
 sediments
 and
 plant
 remains
 from
 packrat
 (Neotoma)
 
middens,
 scientists
 are
 able
 to
 reconstruct
 changes
 in
 the
 climate
 since
 the
 end
 of
 the
 Frasier
 
glaciations.
 In
 general,
 plant
 population
 responses
 to
 climatic
 changes
 include
 persistence,
 
range
 shifts,
 adaptation,
 or
 extinction
 (Davis
 et
 al.,
 2005).
 
 Indeed,
 the
 best
 evidence
 that
 plant
 
ranges
 shift
 with
 climate
 comes
 from
 paleontological
 studies
 from
 the
 Holocene
 epoch
 11,000
 
yrs.
 B.P.
 (Iverson
 and
 Passard,
 2001).
 
 However,
 paleoclimate
 reconstruction
 from
 the
 pollen
 
record
 depends
 upon
 the
 assumption
 that
 species
 tolerance
 limits
 have
 remained
 stable
 


 

 

Page
 9
 


 

 

throughout
 time
 (Davis
 et
 al.,
 2005).
 
 Certainly
 species
 tolerance
 limits
 (degree
 growing
 days,
 
mean
 temperature
 of
 the
 coldest
 month)
 have
 evolved
 over
 the
 past
 11,000
 years.
 
 Empirical
 
modeling
 has
 shown
 that
 detectable
 adaptive
 divergence
 evolves
 on
 a
 time
 scale
 comparable
 to
 
past
 climatic
 changes,
 within
 decades
 for
 herbaceous
 species
 and
 within
 centuries
 or
 millennia
 
for
 longer
 lived
 trees
 (Davis
 et
 al.,
 2005).
 
 What
 the
 pollen
 record
 demonstrates
 in
 western
 
Washington
 is
 that
 individual
 plant
 species
 were
 present
 at
 specific
 locations,
 during
 a
 certain
 
time
 frame,
 and
 within
 a
 probable
 climatic
 envelope.
 
 
 
 


 
Paleo-­‐ecological
 History
 
Between
 18,000
 and
 15,000
 yrs.
 B.P.
 the
 lowlands
 of
 western
 Washington
 were
 covered
 
by
 glacier
 ice.
 
 Tundra
 like
 plant
 communities
 existed
 in
 mountain
 refugia
 and
 other
 areas
 that
 
were
 not
 covered,
 such
 as
 parts
 of
 the
 Olympic
 Peninsula.
 
 Vegetation
 may
 have
 resembled
 
modern
 high
 altitude
 communities
 east
 of
 the
 Cascades
 with
 abundant
 grasses (Graminoids),
 
snakeweed
 (Polygonum
 bistortoides),
 corn
 salad
 (Valerianella),
 and
 Sitka
 berry
 (Sanguisorba)
 
along
 with
 tree
 species;
 lodgepole
 pine
 (Pinus
 contorta),
 Engelmann
 spruce
 (Picea
 engelmanii),
 
Sitka
 spruce
 (Picea
 sitchensis),
 Pacific
 silver
 fir
 (Abies
 amabilis),
 and
 Grand
 fir
 (Abies
 grandis)
 
(Leopold
 and
 Boyd,
 1999,
 Barnosky,
 1985).
 
 Around
 15,000
 yrs.
 B.P.
 glacier
 ice
 in
 the
 lowlands
 
of
 western
 Washington
 began
 to
 melt.
 
 
 
 
 
The
 ice
 sheet
 of
 the
 Vashon
 Stade
 melted
 in
 3,000
 to
 4,000
 years,
 which
 is
 fairly
 quick
 
compared
 to
 other
 ice
 sheets
 of
 the
 Pleistocene
 epoch.
 
 
 
 As
 the
 ice
 sheets
 wasted,
 
temperatures
 warmed,
 precipitation
 increased
 and
 species
 adjusted
 their
 ranges
 and
 
abundance
 according
 to
 environmental
 tolerances
 (Whitlock
 and
 Knox,
 2002).
 
 Between
 15,000
 


 

 

Page
 
10
 


 

 

yrs.
 B.P.
 and
 11,200
 yrs.
 B.P.
 much
 of
 the
 Puget
 Trough
 was
 open,
 flat,
 gravelly
 terraces
 of
 
glacial
 outwash.
 
 Lodgepole
 pine
 (P.
 contorta)
 appears
 to
 have
 initially
 colonized
 the
 outwash
 
throughout
 the
 de-­‐glaciated
 zone,
 and
 was
 soon
 followed
 by
 Mountain
 hemlock
 (Tsuga
 
mertensiana)
 and
 Sitka
 alder
 (Alnus
 sinuata)
 indicating
 a
 cooler
 wetter
 climate
 compared
 to
 the
 
present
 (Barnosky,
 1985).
 
 
 
 
The
 climate
 of
 western
 Washington
 continued
 to
 change
 and
 eventually
 temperatures
 
exceeded
 present
 day
 values.
 In
 western
 Washington
 the
 observation
 of
 western
 hemlock
 
(Tsuga
 heterophylla)
 pollen
 grains
 at
 Nisqually
 Lake
 as
 early
 as
 12,700
 yrs.
 B.P.
 provides
 the
 first
 
floristic
 evidence
 of
 post
 glacial
 warming
 (Barnosky,
 1985).
 
 By
 11,000
 yrs.
 B.P.
 temperate
 taxa
 
are
 registered
 at
 other
 sites
 as
 well
 indicating
 a
 transition
 from
 tundra
 parkland
 to
 open
 forest
 
parkland
 with
 patches
 of
 prairie
 intermixed
 (Barnosky,
 1985,
 Leopold
 and
 Boyd,
 1999).
 
 The
 
pollen
 data
 suggest
 an
 expansion
 of
 Willamette
 Valley
 vegetation
 northward
 into
 southwestern
 
Washington
 (Barnosky,
 1985).
 
 Between
 11,000
 and
 10,000
 yrs
 B.P
 Douglas-­‐fir
 (Pseudotsuga
 
menziesii)
 invaded,
 most
 likely
 from
 the
 Willamette
 Valley,
 and
 quickly
 established
 itself
 
replacing
 lodgepole
 pine
 (P.
 contorta)
 as
 the
 dominate
 species
 of
 the
 lowlands
 (Barnosky,
 
1985).
 
 The
 expansion
 of
 western
 hemlock
 (T.
 heterophylla)
 occurred
 at
 a
 much
 slower
 rate
 
than
 Douglas-­‐fir
 (P.
 menziesii)
 and
 was
 not
 a
 climax
 species
 until
 after
 4,500
 yrs.
 B.P.
 when
 the
 
climate
 changed
 again
 becoming
 colder
 and
 wetter
 (Hansen,
 1947).
 
 
 
 
Fire
 regimes
 were
 also
 altered
 during
 the
 Holocene
 epoch,
 and
 it
 was
 likely
 that
 
increased
 fire
 due
 to
 the
 warmer
 drier
 climate
 (11,000-­‐7,800
 yrs.
 B.P)
 was
 the
 proximal
 
disturbance
 which
 affected
 vegetation
 shifts
 (Whitlock
 and
 Knox,
 2002).
 
 The
 composition
 of
 
vegetation
 in
 the
 lowlands
 of
 western
 Washington
 was
 savanna
 like;
 prairies
 were
 not
 early
 


 

 

Page
 
11
 


 

 

successional
 stages
 but
 persistent
 features
 of
 a
 landscape
 shaped
 by
 frequent
 fire
 disturbance
 
(Barnosky,
 1985).
 
 
 The
 pollen
 evidence
 clearly
 indicates
 that
 the
 peak
 abundance
 of
 prairie
 
elements
 like
 grasses
 (Graminoids),
 hazel
 (Corylus),
 and
 oak
 (Quercus)
 occurred
 in
 the
 early
 
Holocene,
 before
 6,800
 yrs.
 B.P.
 (Leopold
 and
 Boyd,
 1999).
 Drought
 and
 disturbance
 adapted
 
species;
 Red
 alder
 (Alnus
 rubra)
 and
 bracken
 fern
 (Pteridium
 aquilinum)
 were
 much
 more
 
abundant
 occurring
 as
 successional
 species
 (Leopold
 and
 Boyd,
 1999).
 
 Douglas-­‐fir
 (P.
 menziesii)
 
and
 Garry
 Oak
 (Quercus
 garryana)
 were
 the
 main
 trees
 associated
 with
 grasses
 (Graminoids)
 
and
 forbs
 from
 the
 Apiaceae,
 Agavaceae,
 Saxifragaceae,
 and
 Polygonaceae
 families,
 which
 
flourished
 periodically
 after
 local
 fires
 (Leopold
 and
 Boyd,
 1999).
 Before
 6,800
 yrs.
 B.P.
 the
 
growth
 of
 western
 hemlock
 (T.
 heterophylla)
 and
 western
 red
 cedar
 (Thuja
 plicata)
 populations
 
was
 delayed
 probably
 as
 a
 result
 of
 drought
 conditions
 and
 a
 regular
 fire
 regime
 (Barnosky,
 
1985).
 
 After
 4,500
 yrs.
 B.P.,
 the
 pollen
 record
 indicates
 the
 formation
 of
 closed
 forests
 of
 
Douglas-­‐fir
 (P.
 menziesii),
 western
 hemlock
 (T.
 heterophylla)
 and
 western
 red
 cedar
 (Thuja
 
plicata)
 throughout
 the
 Puget
 trough
 marking
 the
 temperate
 humid
 climate
 of
 today.
 
 The
 story
 
of
 the
 south
 Puget
 Sound
 prairie
 ecosystem
 would
 have
 ended
 with
 this
 shift
 in
 climate
 if
 it
 was
 
not
 for
 the
 actions
 of
 another
 species.
 
 
 
 
 
 
 
 
 

Cultural
 Landscape
 

 

Just
 as
 plants
 and
 animals
 followed
 the
 retreat
 of
 the
 glaciers,
 so
 too
 did
 humans.
 
 Some
 

of
 the
 earliest
 archeological
 evidence
 from
 Washington
 dates
 back
 to
 13,000
 yrs.
 B.P.
 
 
 Evidence
 
suggests
 that
 these
 people
 were
 hunters
 who
 crossed
 a
 land
 bridge
 from
 Siberia.
 
 In
 a
 few
 
generations
 their
 population
 dramatically
 increased
 at
 the
 expense
 of
 mega
 fauna
 like
 
mastodons,
 whose
 extinction
 they
 may
 have
 caused
 (Martin,
 1967).
 Across
 most
 of
 North
 


 

 

Page
 
12
 


 

 

America,
 by
 7,000
 yrs.
 B.P,
 hunting
 cultures
 adapted
 to
 vanishing
 game
 by
 foraging
 on
 the
 
nutritious
 parts
 of
 plants
 (Kruckeberg,
 1991). Eventually
 a
 complex
 culture
 developed
 in
 the
 
lowlands
 of
 western
 Washington.
 
 The
 Salish
 people,
 as
 they
 would
 later
 be
 called,
 occupied
 the
 
lands
 west
 of
 the
 Cascade
 Range
 throughout
 British
 Columbia,
 Washington,
 and
 Oregon
 
(Underhill,
 1945).
 
 The
 economy
 of
 the
 Salish
 was
 based
 upon
 a
 wide
 range
 of
 wild
 foods,
 
including
 fin
 and
 shellfish,
 game
 (deer,
 elk,
 small
 mammals,
 and
 fowl),
 roots,
 seeds,
 and
 berries
 
(Underhill,
 1945)
 

 

While
 salmon
 was
 a
 prominent
 food
 staple
 and
 significant
 cultural
 icon
 of
 the
 Salish,
 

food
 crops
 from
 lowland
 prairies
 such
 as
 camas
 (Camassia
 quamash)
 ,
 salmonberry
 (Rubus
 
spectabilis),
 and
 bracken
 fern
 (Pteridium
 aquilinum)
 were
 also
 of
 great
 importance
 (Underhill
 
1945,
 White
 1980,
 Leopold
 and
 Boyd,
 1999).
 Historical
 and
 scientific
 evidence
 clearly
 
demonstrate
 that
 the
 Salish
 maintained
 prairies
 throughout
 the
 Puget
 Trough
 as
 a
 result
 of
 
climatic
 changes
 in
 the
 late
 Holocene.
 
 The
 warm
 and
 dry
 period
 of
 the
 middle
 Holocene
 (9,500
 
-­‐4,500
 yrs.
 B.P)
 created
 a
 climate
 suitable
 for
 a
 cohort
 of
 prairie
 and
 savanna
 species
 to
 develop
 
under
 a
 frequent
 fire
 and
 drought
 regime
 (Barnosky,
 1985,
 Leopold
 and
 Boyd,
 1999,
 and
 
Hansen,
 1947).
 
 From
 4,500
 years
 B.P
 to
 the
 present
 a
 climatic
 cooling
 enabled
 conifers
 forest
 
to
 expand
 at
 the
 expense
 of
 prairie
 and
 savannah
 grasslands
 (Leopold
 and
 Boyd,
 1999).
 
 Within
 
a
 few
 generations
 the
 lack
 of
 frequent
 disturbance
 should
 have
 led
 to
 the
 establishment
 of
 the
 
Douglas-­‐fir/western
 hemlock
 ecotone.
 
 Yet
 the
 Salish
 culture
 adapted
 to
 climate
 change
 by
 
restoring
 ecological
 process
 through
 the
 use
 of
 fire
 and
 frequent
 disturbance.
 
 
 
 
 
 
 
 
 
Isolated
 prairie
 fragments
 remained
 throughout
 the
 Puget
 Trough
 from
 Oregon
 to
 
British
 Columbia
 because
 they
 had
 a
 cultural,
 economic
 and
 ecological
 value
 for
 the
 people
 of
 


 

 

Page
 
13
 


 

 

the
 Pacific
 Northwest.
 
 On
 the
 glacial
 outwash
 and
 bottom
 lands
 of
 the
 Puget
 Trough,
 the
 Salish
 
maintained
 an
 oak
 savannah/
 grassland
 mosaic
 comprised
 of
 many
 food
 and
 medicine
 
producing
 plants.
 
 Of
 the
 157
 inventoried
 prairie
 plant
 species,
 35%
 are
 edible
 and
 over
 85%
 
have
 some
 documented
 ethnobotanical
 use
 (Storm,
 2004,
 Norton
 et
 al.,
 1999).
 
 The
 Salish
 were
 
dependent
 upon
 the
 diversity
 and
 density
 of
 prairie
 species
 for
 food,
 medicine
 and
 tools
 
(Norton
 et
 al.,
 1999).
 The
 table
 (Fig.
 1)
 lists
 some
 of
 the
 plants
 associated
 with
 prairies
 that
 had
 
cultural,
 nutritional
 and
 medicinal
 values.
 
 
 
Rather
 than
 being
 major
 Indian
 food
 sources
 because
 they
 dominated
 the
 prairies,
 
bracken,
 nettles
 and
 camas
 more
 likely
 dominated
 the
 prairies
 because
 they
 were
 major
 
Indian
 food
 sources.
 
 (White,
 1980)
 
 

 
Salish
 tribes
 developed
 sophisticated
 methods
 for
 maintaining
 the
 functional
 value
 of
 the
 
landscape,
 which
 enable
 the
 persistence,
 adaptation
 and
 dispersal
 of
 prairie
 species
 through
 
fire
 and
 harvesting
 practices
 (Agee,
 1993,
 Storm,
 2004,
 Anderson,
 2005).
 
 

Fire
 
 
Fire
 was
 commonly
 used
 across
 North
 America
 as
 a
 multi-­‐purpose
 management
 tool
 in
 
many
 Native
 cultures
 (Vale,
 2002).
 
 On
 the
 south
 Puget
 Sound
 prairie
 landscape
 fire
 was
 
primarily
 used
 to
 create
 open
 spaces
 for
 prairie
 species
 and
 maintain
 oak
 stands.
 
Anthropogenic
 fires
 occurred
 later
 in
 the
 season
 and
 at
 shorter
 intervals
 than
 natural
 fires.
 
 In
 
July
 and
 August
 burning
 was
 sporadic,
 most
 likely
 occurring
 after
 the
 harvesting
 of
 seasonally
 
and
 locally
 available
 wild
 foods
 in
 limited
 areas
 (Boyd,
 1999).
 
 In
 late
 August
 and
 early
 
September
 large
 fires
 were
 set
 on
 prairies
 when
 most
 species
 were
 dormant
 and
 climatic
 
conditions
 were
 appropriate
 (Boyd,
 1999).
 Salish
 tribes
 likely
 managed
 the
 prairies
 on
 a
 
landscape
 scale
 coordinating
 cross-­‐tribal
 burning
 practices
 and
 rotating
 burns
 every
 couple
 of
 


 

 

Page
 
14
 


 

 

years
 (South
 Sound
 Prairies,
 2009,
 Storm,
 2004).
 
 
 
Without
 routine
 burning
 the
 prairie
 species
 would
 not
 have
 clear
 spaces
 and
 disturbed
 
habitat
 to
 grow.
 
 Fire
 is
 a
 strong
 mortality
 factor
 for
 small
 woody
 species
 including
 Douglas-­‐fir
 
(P.
 menziesii)
 under
 5
 feet
 tall
 and
 has
 the
 positive
 effect
 of
 releasing
 nutrients
 and
 creating
 
bare
 soil
 for
 prairie
 species
 (Dunn,
 1998).
 With
 the
 absence
 of
 fire
 from
 the
 landscape
 Douglas-­‐
fir
 (P.
 menziesii)
 and
 eventually
 western
 hemlock
 (T.
 heterophylla) replaced
 the
 prairie
 and
 oak
 
woodland
 ecotones.
 
 As
 was
 evident
 to
 James
 Cooper
 in
 1859,
 after
 several
 decades
 of
 fire
 
suppression
 by
 settlers;
 
 
 
 
I
 conclude
 that
 these
 are
 the
 remains
 of
 a
 much
 more
 extensive
 prairie,
 which,
 within
 a
 
comparatively
 recent
 period,
 occupied
 all
 the
 lower
 and
 dryer
 parts
 of
 the
 valleys,
 and
 
which
 the
 forest
 have
 been
 gradually
 spreading
 over
 in
 their
 downward
 progress
 from
 
the
 mountains.
 (Storm,
 2004)
 
 
 


 
Anthropogenic
 fire
 not
 only
 removed
 competition
 but
 over
 millenniums
 increased
 the
 

productivity
 associated
 with
 the
 prairies.
 
 Camas
 (C.
 quamash)
 and
 other
 geophytes
 directly
 
benefited
 from
 annual
 burning
 in
 the
 fall.
 A
 seven
 year
 study
 comparing
 fall
 burning
 to
 summer
 
burning
 on
 Mima
 Mounds
 Natural
 Area
 Preserve
 found
 that
 the
 ecological
 effect
 of
 burning
 in
 
the
 fall
 increased
 camas
 (C.
 quamash)
 populations
 and
 decreased
 cover
 by
 Idaho
 Fescue
 
(Festuca
 idahoensis)
 (Schuller,
 1997).
 
 I
 
 
The
 oak
 woodlands
 associated
 with
 the
 prairies
 benefited
 from
 regular
 low
 intensity
 
burning
 which
 created
 standardized
 well
 groomed
 oak
 groves
 that
 resembled
 European
 fruit
 
and
 nut
 orchards
 (Boyd,
 1999).
 
 Early
 descriptions
 of
 oak
 woodlands
 reinforced
 the
 idea
 that
 
these
 were
 even
 aged
 and
 well
 spaced
 stands
 ideal
 for
 harvesting.
 
 
 
 
Our
 route
 has
 been
 through
 what
 might
 be
 called
 a
 hilly
 prairie
 country,
 the
 grass
 
mostly
 burned
 off
 by
 recent
 fires,
 and
 the
 whole
 country
 sprinkled
 with
 oaks,
 so
 
regularly
 dispersed
 as
 to
 have
 the
 appearance
 of
 a
 continued
 orchard
 of
 oak
 trees
 

 

 

Page
 
15
 


 

 

(Henry
 Eld
 Wilkes
 Expedition
 1841).
 (U.S.F.S.,
 2007)
 

 
Fire
 increased
 productivity
 by
 reducing
 competition
 from
 conifers,
 smaller
 oaks,
 and
 shrubs.
 
Prescribed
 burning
 also
 had
 the
 effect
 of
 removing
 bio-­‐litter,
 which
 aided
 in
 the
 harvest
 of
 
acorns
 (Anderson,
 2005).
 
 
 
Fire
 was
 utilized
 by
 the
 Salish
 to
 create
 open
 spaces
 for
 prairie
 species
 and
 maintain
 oak
 
stands.
 
 Fire
 has
 a
 positive
 ecological
 effect
 on
 prairie
 species
 through
 the
 mortality
 of
 
competing
 trees
 and
 shrubs
 along
 with
 promoting
 nutrient
 cycling.
 
 While
 fire
 was
 an
 important
 
management
 practice
 of
 the
 Salish,
 harvesting
 practices
 also
 had
 a
 profound
 impact
 on
 the
 
landscape,
 and
 is
 worthy
 of
 more
 research.
 
 
 
 


 
Harvesting
 Practices
 
The
 Salish
 significantly
 modified
 the
 composition,
 structure
 and
 genetic
 diversity
 of
 the
 
prairie
 landscape
 through
 harvesting.
 
 Over
 time
 the
 Salish
 selected
 geophytes
 that
 were
 
adapted
 to
 herbivore
 and
 developed
 harvesting
 practices
 that
 enhanced
 the
 population
 of
 
certain
 prairie
 species.
 
 Over
 millennia
 of
 animal
 and
 human
 selection,
 protection
 and
 
replanting
 of
 offshoots,
 these
 species
 most
 likely
 underwent
 genetic
 changes.
 Research
 in
 
northern
 California
 and
 British
 Columbia
 has
 demonstrated
 that
 the
 recurring
 excavation
 of
 
plants
 selected
 for
 specific
 genotypes
 that
 thrived
 under
 frequent
 disturbance
 regimes
 
(Anderson,
 2005,
 Beckwith,
 2004).
 
 In
 fact
 the
 growth
 of
 bulblets
 and
 cormlets
 in
 some
 
geophytic
 species
 is
 slow
 or
 suppressed
 until
 they
 are
 detached
 from
 the
 parent
 (Anderson,
 
2005).
 
 Geophytic
 plants
 of
 the
 prairies
 were
 reliant
 upon
 people
 and
 animals
 to
 spread
 their
 
seed,
 while
 people
 and
 animals
 were
 reliant
 upon
 the
 harvest
 of
 these
 plants
 for
 their
 survival.
 
 


 

 

Page
 
16
 


 

 

In
 particular,
 the
 density
 and
 variety
 of
 camas
 (C.
 quamash)
 that
 once
 existed
 on
 the
 prairie
 
landscape
 was
 not
 fortuitous
 but
 correlated
 to
 general
 harvesting
 practices,
 individual
 
stewardship
 of
 prairie
 plots
 and
 probable
 trade
 amongst
 the
 Salish.
 
 
 
 
 
 
 
 
 
Traditional
 cultures
 conveyed
 knowledge
 through
 an
 oral
 tradition,
 that
 kept
 
management
 practices
 relatively
 consistent
 from
 generation
 to
 generation
 (Nabhan,
 1989).
 
 
Amongst
 the
 Salish,
 sustainable
 camas
 harvesting
 practices
 were
 developed
 as
 part
 of
 a
 
tradition
 which
 valued
 production,
 to
 ensure
 that
 cormlets
 and
 bulblets
 would
 have
 a
 greater
 
chance
 at
 germination
 and
 growth
 (Beckwith,
 2004).
 
 The
 practice
 of
 harvesting
 with
 a
 digging
 
stick
 divided
 the
 bulbs
 and
 created
 bare
 aerated
 soil,
 conditions
 ideal
 for
 germination,
 not
 just
 
for
 geophytes,
 but
 also
 for
 annual
 prairie
 species
 (Anderson,
 2005).
 
 
 While
 little
 research
 has
 
been
 conducted,
 harvesting
 camas
 on
 a
 scale
 to
 support
 the
 estimated
 40,000
 Salish
 of
 the
 
interior
 Puget
 Trough
 valleys
 would
 undoubtedly
 have
 created
 a
 significant
 disturbance
 from
 
which
 certain
 annual
 species
 most
 likely
 benefited.
 
 Extensive
 ethnobotanical
 research
 in
 
northern
 California
 revealed
 that
 some
 Native
 harvesting
 practices
 were
 to;
 
spare
 some
 individual
 plants
 
weed
 around
 favored
 plants
 
harvest
 after
 seed-­‐set
 
 
burn
 areas
 in
 which
 the
 plants
 grow
 to
 
replant
 cormlets
 and
 bulblets
 
decrease
 plant
 competition
 and
 recycle
 
leave
 a
 lower
 section
 of
 the
 tubers
 
nutrients
 (Anderson,
 2005)
 

 
By
 utilizing
 these
 tactics
 harvesters
 increased
 the
 densities
 of
 populations
 ensuring
 that
 these
 
important
 food
 crops
 would
 return
 year
 after
 year.
 
 
 
Secondly,
 individual
 stewardship
 of
 the
 land
 would
 have
 increased
 genetic
 diversity
 
through
 the
 practice
 of
 seed
 selection.
 
 The
 Salish
 managed
 food
 crops
 on
 the
 prairies
 through
 
cultivation
 or
 tending
 of
 plants
 similar
 to
 a
 garden
 or
 orchard
 (Storm,
 2004).
 Amongst
 the
 Salish
 
in
 Victoria
 B.C.
 access
 and
 use
 of
 inherited
 resource
 sites
 were
 controlled
 by
 their
 respective
 


 

 

Page
 
17
 


 

 

owners
 or
 "skilled
 specialists"
 within
 the
 family
 (Beckwith,
 2004).
 
 Extensive
 and
 more
 
productive
 harvesting
 grounds
 were
 likely
 associated
 with
 families
 of
 higher
 status
 (Beckwith,
 
2004).
 
 As
 Mary
 George
 of
 the
 Straits
 Salish
 of
 Victoria,
 B.C.
 explained
 to
 anthropologist
 W.
 
Suttles
 in
 2003;
 
 
 
[T'
 Sou-­‐ke
 people]
 had
 lots
 (plots).
 They
 didn't
 just
 dig
 anywhere.
 Stakes
 
marked
 them.
 Women
 owned
 them,
 and
 they
 would
 fight
 for
 their
 claims.
 
If
 someone
 came
 on
 to
 a
 woman's
 plot,
 she
 would
 quarrel.
 If
 the
 owner
 
died,
 a
 near
 relative
 got
 the
 plot.
 (Beckwith,
 2004)
 

 
Most
 land-­‐based
 cultures
 have
 practices
 that
 guide
 plant
 selection
 and
 seed
 saving
 (Nabhan,
 
1998).
 
 Each
 individual
 might
 develop
 their
 own
 variations
 based
 on
 site
 conditions
 but
 the
 
general
 scheme
 is
 passed
 on
 from
 generation
 to
 generation
 (Nabhan,
 1998).
 
 
 
 Amongst
 the
 
Salish,
 camas
 gathering
 sites
 in
 particular
 were
 the
 responsibility
 of
 a
 family
 unit
 and
 gatherers
 
were
 careful
 about
 the
 management
 of
 their
 sites
 (Storm,
 2004).
 
 Once
 natural
 selection
 sets
 a
 
course
 in
 Native
 fields,
 cultural
 selection
 and
 replanting
 of
 the
 biggest
 or
 best
 tasting
 varieties
 is
 
reinforcing
 (Nabhan,
 1989).
 With
 a
 food
 crop
 as
 significant
 as
 camas
 (C.
 quamash),
 it
 is
 possible
 
that,
 specific
 designations
 and
 local
 distinctions
 for
 camas
 variants
 have
 disappeared
 over
 time
 
as
 the
 management
 of
 these
 populations
 declined
 (Beckwith,
 2004).
 
 
Finally,
 the
 Salish
 most
 likely
 distributed
 seeds
 and
 bulbs
 through
 harvesting
 and
 trade.
 
While
 there
 is
 a
 lack
 of
 direct
 historical
 evidence
 demonstrating
 the
 extent
 to
 which
 the
 Salish
 
distributed
 plants,
 tending
 and
 trading
 of
 food
 crops
 was
 a
 common
 practice
 among
 many
 
Native
 cultures.
 For
 example,
 when
 the
 potato
 was
 introduced
 all
 Salish
 tribes
 moved
 easily
 and
 
rapidly
 to
 the
 cultivation
 of
 that
 crop
 without
 any
 direct
 instruction
 from
 whites
 (White,
 1980).
 
 
Bulblets
 and
 cormlets
 were
 moved
 into
 fresh
 areas,
 at
 first
 unwittingly,
 but
 later
 with
 zeal
 and
 
care
 (White,
 1980).
 
 A
 common
 practice
 of
 many
 tribes
 was
 to
 disperse
 plants
 along
 trading
 and
 

 

 

Page
 
18
 


 

 

seasonal
 migration
 routes.
 
 In
 1853
 James
 Cooper
 catalogued
 the
 plants
 along
 the
 Kilikitat
 trail,
 
which
 connects
 the
 Columbian
 Basin
 with
 northern
 California.
 
 Of
 the
 sixty-­‐five
 plants
 observed,
 
fifty
 eight
 had
 nutritional
 or
 medicinal
 uses
 (Norton
 et
 al,
 1999).
 
 In
 Victoria
 B.C.,
 Salish
 
maintained
 populations
 of
 camas
 and
 berries
 near
 their
 camps,
 although
 there
 is
 little
 evidence
 
to
 determine
 whether
 they
 planted
 or
 just
 enhanced
 these
 populations
 (Beckwith,
 2004).
 
 It
 is
 
well
 established
 that
 the
 Salish
 used
 fire
 and
 harvesting
 practices
 to
 increase
 population
 
densities
 of
 important
 food
 crops.
 
 It
 is
 a
 fair
 assumption
 that
 they
 most
 probably
 dispersed
 
seeds,
 cormlets
 and
 bulblets
 into
 new
 areas
 that
 were
 easily
 accessible
 to
 them
 during
 travel
 
and
 at
 seasonal
 camps.
 
 
 
 

Pestilence
 on
 the
 Prairie
 
 
 
 
When
 the
 first
 settlers
 arrived
 in
 the
 Puget
 Trough,
 most
 viewed
 the
 prairie
 landscape
 as
 
natural
 or
 wild,
 waiting
 to
 be
 tamed
 and
 cultivated.
 
 This
 perspective
 overlooked
 the
 millennia
 
of
 labor
 that
 the
 Salish
 people
 expended
 to
 create
 the
 breadth,
 beauty
 and
 bounty
 of
 the
 
prairie
 landscape.
 
 Adding
 to
 cultural
 misperceptions
 of
 an
 untamed
 wilderness,
 was
 that
 the
 
Salish
 population,
 which
 maintained
 the
 prairie
 landscape
 was
 decimated
 by
 disease,
 before
 
many
 of
 the
 settlers
 arrived.
 
 Vancouver
 was
 one
 of
 the
 first
 Europeans
 to
 explore
 the
 Puget
 
Sound
 in
 1770
 and
 noted
 in
 his
 journals
 the
 lack
 of
 inhabitants
 and
 presence
 of
 human
 remains;
 
 
 
 
 
 
It
 was
 a
 fact
 not
 less
 singular
 than
 worthy
 of
 observation,
 that
 on
 the
 whole
 extensive
 
coast
 of
 New
 Albion,
 and
 more
 particularly
 in
 the
 vicinity
 of
 those
 fertile
 and
 delightful
 
shores
 we
 had
 lately
 passed
 we
 had
 not
 seen
 any
 inhabitants,
 or
 met
 with
 any
 
circumstances
 that,
 in
 indicated
 a
 probability
 of
 the
 country
 being
 inhabited
 …
 In
 our
 
different
 excursions,
 the
 skull,
 limb,
 ribs,
 and
 back-­‐bones,
 or
 some
 vestiges
 of
 the
 
human
 body,
 were
 found
 in
 many
 places
 promiscuously
 scattered
 about
 the
 beaches
 in
 
great
 numbers.
 (Vancouver
 as
 in
 Gibbs,
 1877)
 

 
Some
 scholars
 estimate
 that
 up
 to
 95%
 of
 the
 interior
 valley
 population
 was
 expired
 by
 1850
 


 

 

Page
 
19
 


 

 

when
 the
 homestead
 and
 donation
 land
 claim
 acts
 began
 to
 fuel
 settlement
 in
 the
 Puget
 
Trough
 (Boyd,
 1999).
 
 
 

 

The
 high
 mortality
 of
 the
 Salish
 population
 to
 disease
 can
 be
 attributed
 to
 the
 lack
 of
 

immunity
 and
 social
 responses
 to
 illness.
 
 These
 epidemics
 are
 termed
 virgin
 soil
 diseases,
 
referring
 to
 the
 fact
 that
 they
 were
 introduced
 into
 a
 population
 that
 had
 never
 previously
 
experienced
 them
 (Boyd,
 1999).
 
 There
 were
 several
 such
 epidemics
 in
 the
 early
 recorded
 
history
 of
 the
 Pacific
 Northwest:
 
 1770’s
 smallpox,
 1830’s
 malaria,
 1838
 influenza,
 1844
 
dysentery,
 and
 1848
 measles.
 In
 the
 Puget
 Trough
 the
 defining
 disease
 was
 malaria.
 
 
 All
 Pacific
 
Northwest
 tribes
 also
 experienced
 early
 small
 pox,
 and
 most
 suffered
 from
 dysentery
 and
 
measles
 as
 well
 (Boyd,
 1999).
 
 The
 data
 shows
 that
 small
 pox
 traveled
 through
 the
 population
 
at
 widely
 spread
 intervals,
 about
 once
 per
 generation
 (Boyd,
 1999).
 
 Malaria
 however,
 once
 
established,
 had
 a
 chronic
 debilitating
 effect
 on
 the
 Salish,
 taking
 a
 yearly
 toll
 of
 newborns
 and
 
infants
 (Boyd,
 1999).
 
 

 

Population
 estimates
 of
 the
 Salish
 have
 increased
 as
 technology
 and
 mindsets
 have
 

changed
 over
 time.
 
 Powell
 in
 1877
 estimated
 a
 population
 of
 8,000
 for
 the
 tribes
 within
 the
 
Straits
 of
 Juan
 de
 Fuca
 and
 26,800
 for
 the
 entire
 population
 in
 western
 Washington.
 
 Early
 
approximations
 like
 Powell’s
 were
 often
 biased
 and
 erroneous,
 asserting
 that
 the
 epidemics
 
that
 ravaged
 the
 Salish
 were
 natural,
 ignoring
 historical
 accounts;
 
 
 
 
 
too
 great
 stress
 is
 not
 to
 be
 laid
 upon
 the
 assertion
 of
 the
 Indians
 themselves
 that
 they
 
were
 once
 a
 great
 many,
 for
 their
 ideas
 of
 numbers
 are
 vague
 at
 best,
 and
 the
 
recollection
 of
 any
 former
 mortality
 would
 probably
 be
 greatly
 exaggerated.
 (Gibbs,
 
1877)
 

 
Most
 recently
 in
 1996,
 Boyd
 using
 computational
 analysis
 based
 upon
 the
 earliest
 reliable
 
censuses,
 estimates
 a
 population
 of
 183,661
 for
 the
 coastal
 area
 of
 Washington
 and
 northern
 

 

 

Page
 
20
 


 

 

Oregon,
 and
 approximately
 40,000
 for
 the
 interior
 valleys
 of
 the
 Puget
 Trough
 (Fig.
 B).
 
 Boyd’s
 
estimates
 are
 five
 times
 greater
 than
 Powell’s
 estimate.
 
 
 By
 1850,
 when
 the
 Donation
 Land
 
Claim
 Act
 spurred
 settlement
 in
 the
 territory,
 the
 release
 of
 invasive
 diseases
 had
 diminished
 
the
 population
 of
 Interior
 Valley
 tribes
 to
 roughly
 2,000,
 a
 shadow
 of
 pre-­‐epidemic
 densities.
 
 
 
As
 the
 population
 of
 the
 Salish
 declined
 so
 too
 did
 the
 traditional
 maintenance
 practices
 of
 
prescribed
 burning
 and
 harvesting.
 
 
 
 
 
 
 
Salish
 culture
 possessed
 ecological
 knowledge
 and
 exhibited
 management
 practices
 
which
 increased
 the
 fecundity
 and
 diversity
 of
 certain
 prairie
 species
 on
 the
 south
 Puget
 Sound
 
landscape.
 
 The
 utilization
 of
 fire
 and
 harvesting
 practices
 preserved
 a
 seral
 grassland
 
ecosystem
 that
 contained
 value
 in
 both
 form
 and
 function.
 
 The
 traditional
 knowledge
 of
 the
 
Salish
 culture
 was
 diluted
 by
 debilitating
 epidemics.
 
 By
 the
 time
 settlers
 began
 to
 arrive
 in
 
western
 Washington,
 Douglas-­‐fir
 (P.
 menziesii)
 was
 already
 encroaching
 on
 to
 the
 prairie
 
landscape.
 
 
 


 

 

Page
 
21
 


 

 

II.
 Development
 and
 Fragmentation
 
An
 American
 explorer
 said
 of
 the
 Cowlitz
 and
 Chehalis
 prairies,
 “here
 the
 ground
 is
 
ready
 for
 the
 plough
 and
 nature
 seems
 as
 it
 were
 to
 invite
 the
 husbandman
 to
 his
 labor”
 
(Leopold
 and
 Boyd,
 1999).
 However,
 the
 husbandman’s
 land
 management
 practices
 were
 vastly
 
different
 from
 the
 Salish
 and
 overtime
 have
 proved
 to
 be
 unsustainable.
 
 Even
 though
 settlers
 
and
 the
 Salish
 shared
 a
 similar
 diet
 of
 salmon,
 game,
 and
 root
 crops,
 the
 ecological
 effect
 of
 
their
 labor
 was
 stark
 (White,
 1980).
 
 After
 the
 1850’s
 the
 landscape
 was
 “so
 cataclysmically
 
altered
 and
 with
 such
 unanimity
 of
 purpose
 that
 no
 single
 voice
 of
 conscience
 could
 have
 
effectively
 stemmed
 the
 onslaught
 on
 the
 land”
 (Kruckeberg,
 1991).
 
 Western
 style
 agriculture
 
required
 the
 destruction
 of
 native
 flora,
 suppression
 of
 fire
 and
 the
 introduction
 of
 non-­‐
indigenous
 species,
 which
 changed
 the
 composition,
 structure
 and
 connectivity
 of
 the
 prairie
 
landscape.
 
 Today
 the
 prairies
 which
 survive
 are
 islands
 amongst
 a
 sea
 of
 development,
 and
 the
 
composition
 of
 the
 vegetational
 community
 will
 forever
 remain
 a
 mixture
 of
 original
 and
 
introduced
 species
 (Purcell,
 1987).
 


 
Settlement
 
The
 United
 States
 government
 enacted
 policies
 to
 encourage
 settlement
 which
 led
 to
 
the
 development
 and
 fragmentation
 of
 the
 South
 Puget
 Sound
 prairie
 landscape.
 
 In
 1841,
 the
 
Preemption
 Act
 gave
 the
 opportunity
 to
 purchase
 property
 rights
 to
 squatters
 on
 government
 
land
 not
 to
 exceed
 160
 acres
 (Hibbard,
 1939).
 
 Nine
 years
 later,
 the
 Donation
 Land
 Claim
 Act
 
was
 passed
 into
 law
 by
 Congress
 to
 promote
 the
 settlement
 of
 the
 Oregon
 Territory,
 which
 
included
 Oregon,
 Washington
 and
 Idaho
 (Hibbard,
 1939).
 
 The
 act
 granted
 160
 acres
 to
 every
 


 

 

Page
 
22
 


 

 

white
 male
 18
 or
 older
 and
 320
 acres
 to
 every
 married
 couple
 who
 arrived
 in
 the
 territory
 
before
 December
 1,
 1850.
 
 Settlers
 arriving
 between
 1851
 and
 1854
 were
 eligible
 for
 half
 the
 
amount
 of
 land.
 In
 order
 to
 claim
 land
 under
 the
 Donation
 Land
 Claim
 Act
 settlers
 had
 to
 live
 on
 
and
 cultivate
 the
 land
 for
 at
 least
 four
 years.
 Similarly,
 the
 1862
 Homestead
 Act
 required
 that
 
applicants
 live
 on
 the
 land,
 build
 a
 12
 x
 14
 dwelling
 and
 grow
 food
 crops.
 
 Both
 the
 1850
 
Donation
 Land
 Claim
 and
 the
 1862
 Homestead
 Acts
 required
 settlers
 to
 cultivate
 the
 land
 they
 
intended
 to
 claim,
 presumably
 with
 western
 style
 agriculture
 techniques
 including
 plowing
 and
 
row
 cropping.
 
 
 
The
 people
 who
 moved
 to
 Washington
 during
 the
 1850’s
 and
 60’s
 settled
 prairie
 and
 
wetlands
 first
 because
 they
 were
 relatively
 free
 of
 trees
 and
 appeared
 to
 be
 very
 productive
 
(White,
 1980).
 Even
 though
 past
 attempts
 of
 row
 cropping
 at
 Fort
 Nisqually
 had
 proved
 
unsuccessful,
 farmers
 continued
 to
 settle
 on
 the
 prairies.
 
 Perhaps
 they
 were
 motivated
 by
 
exaggerated
 claims
 of
 fertility;
 
The
 fine
 fertile,
 plains
 and
 prairies
 offer
 far
 greater
 inducements
 (than
 the
 forested
 
lands).
 
 Fruit
 of
 various
 kinds,
 particularly
 apples,
 can
 be
 cultivated
 very
 readily,
 and
 in
 
the
 greatest
 perfection…wheat,
 barley,
 oats,
 and
 potatoes
 yield
 the
 most
 abundant
 
crops,
 of
 the
 finest
 quality.
 (James
 Swan,
 1859
 as
 in
 White,
 1980)
 
 
 


 
In
 reality
 the
 Puget
 Sound
 prairie
 soils
 were
 too
 droughty
 and
 nutrient
 deficient
 for
 European
 
row
 cropping.
 
 The
 best
 land
 for
 growing
 European
 crops
 was
 actually
 the
 woodlands
 
surrounding
 the
 prairies
 where
 loamy
 soils
 existed
 (U.S.F.S.,
 2007),
 
 
 
The
 best
 land
 occurs
 where
 prairies
 are
 intersected
 or
 broken
 by
 belts
 of
 woods,
 that
 
have
 dense
 undergrowth,
 consisting
 of
 hazel,
 Spiraea,
 Cornus,
 and
 Prunus.
 
 (Charles
 
Wilkes,
 1841
 as
 in
 U.S.F.S.,
 2007)
 

 
Regardless
 of
 the
 fertility,
 settlers
 had
 to
 make
 improvements
 and
 cultivate
 their
 potential
 
property
 within
 a
 short
 time
 frame
 in
 order
 to
 qualify
 for
 the
 Donation
 Land
 and
 Homestead
 

 

 

Page
 
23
 


 

 

Acts
 and
 prairies
 were
 much
 easier
 to
 clear
 than
 forested
 lands.
 
 While
 the
 soil
 types
 of
 the
 
South
 Sound
 prairies
 proved
 to
 be
 unsuitable
 for
 farming
 they
 were
 adequate
 for
 grazing
 
(White,
 1980).
 
 7,437
 households
 alone
 were
 registered
 under
 the
 Donation
 Land
 Claim
 Act
 
between
 1850
 and
 1855.
 
 Many
 of
 these
 households
 claimed
 prairie
 land
 for
 agricultural
 and
 
grazing
 purposes.
 
 
The
 ecological
 destruction
 of
 the
 prairies
 was
 inherent
 in
 the
 policies
 of
 the
 U.S.
 
government
 between
 1841
 and
 1862.
 
 Policies
 that
 encouraged
 migration
 to
 western
 territories
 
essentially
 ecologically
 and
 culturally
 transformed
 the
 prairie
 landscape.
 Farmers
 replaced
 the
 
rich
 and
 diverse
 prairie
 ecosystem
 with
 monoculture
 fields
 and
 permanent
 pastures
 (White,
 
1980).
 
 This
 European
 style
 of
 agriculture
 required
 the
 suppression
 of
 fire
 and
 released
 invasive
 
species
 which
 were
 detrimental
 to
 the
 prairie
 ecosystem
 functioning
 (Kruckeberg,
 1991).
 
 
 
 


 
Farming,
 Fire
 Suppression,
 and
 Population
 Growth
 
As
 farming
 and
 animal
 husbandry
 practices
 were
 established
 fires
 were
 discouraged,
 
and
 the
 use
 of
 the
 prairies
 by
 the
 Salish
 was
 largely
 ended
 (South
 Sound
 Prairies,
 2009).
 
 
Domestic
 livestock,
 road
 and
 rail
 construction,
 grassland
 conversion
 to
 agriculture,
 urbanization
 
and
 rural
 development
 all
 contributed
 to
 the
 direct
 or
 indirect
 exclusion
 of
 fires
 (Hesberg
 et
 al.,
 
2005).
 
 As
 stated
 fire
 was
 an
 important
 ecological
 process
 of
 the
 Puget
 Trough
 prairies
 and
 to
 
the
 extent
 that
 settlers
 were
 successful
 in
 excluding
 fire
 from
 the
 prairies,
 so
 too
 were
 they
 at
 
degrading
 the
 prairie
 soils
 (Purcell,
 1987).
 
 Settlers
 were
 quick
 to
 realize
 the
 destructive
 power
 
of
 fire,
 but
 were
 slow
 to
 understand
 its
 power
 to
 restore
 and
 renew
 the
 landscape
 (Purcell,
 
1987).
 
 In
 1913,
 it
 was
 apparent
 that
 the
 forest
 was
 encroaching
 upon
 the
 prairies;
 


 

 

Page
 
24
 


 

 

In
 retracing
 surveyor’s
 lines
 run
 50
 years
 ago,
 the
 limits
 of
 forest
 growth
 were
 found
 to
 
have
 advanced
 on
 the
 prairies…Many
 Gnarled
 skeletons
 of
 the
 broad
 spreading
 prairie
 
oaks
 are
 found
 moldering
 in
 a
 dense
 growth
 of
 young
 fir
 which
 has
 killed
 them
 in
 the
 
last
 half
 of
 the
 century.
 (Kruckeberg
 1991)
 

 
Due
 to
 the
 lack
 of
 fire,
 prairies
 on
 the
 south
 Puget
 Sound
 landscape
 may
 have
 
 been
 lost
 at
 a
 
rate
 of
 approximately
 100
 acres
 per
 year
 since
 the
 1850’s
 due
 to
 the
 conversion
 to
 Douglas-­‐fir
 
(P.
 menziesii)
 forest
 (Kruckeberg,
 1991).
 
Settlers
 and
 Salish
 shared
 a
 functional
 value
 for
 the
 landscape:
 sustenance,
 but
 the
 
methods
 that
 they
 utilized
 had
 radically
 different
 ecological
 effects.
 
 While
 the
 prairies
 seemed
 
rich
 and
 fertile,
 given
 the
 density
 and
 diversity
 of
 species,
 these
 soils
 were
 typically
 low
 in
 
nitrogen,
 highly
 acidic,
 prone
 to
 drought
 and
 were
 generally
 unsuitable
 for
 western
 style
 
agriculture
 (Crawford
 and
 Hall,
 1997).
 
 The
 first
 several
 centimeters
 of
 these
 soils
 have
 a
 thin
 
layer
 of
 organic
 material,
 followed
 by
 approximately
 a
 foot
 of
 strongly
 acidic
 gravelly
 sandy
 
loam
 with
 high
 organic
 content,
 until
 eventually
 a
 layer
 of
 coarse
 sand
 and
 gravel
 (Crawford
 and
 
Hall,
 1997).
 
 Plowing
 was
 necessary
 for
 introduced
 European
 row
 crops
 such
 as
 wheat,
 oats,
 
barley,
 peas,
 corn,
 cabbage,
 carrots,
 turnips,
 beets,
 tomatoes,
 melons
 and
 squash
 but
 it
 
destroyed
 the
 native
 cover
 of
 the
 prairie
 increasing
 evaporation
 rates,
 especially
 during
 the
 dry
 
summer
 months
 (White,
 1980).
 
 The
 raising
 of
 animals
 also
 had
 a
 drastic
 ecological
 impact.
 
 
Cattle
 and
 sheep
 grazed
 upon
 prairie
 grasses
 and
 pigs
 were
 set
 free
 to
 forage
 upon
 bulbs,
 in
 
particular
 pigs
 ate
 an
 inordinate
 amount
 of
 camas
 (C.
 quamash)
 (White,
 1980,
 Beckwith,
 2004).
 
 
Despite
 poor
 soils,
 farming
 continued
 on
 the
 prairies
 for
 centuries.
 
 In
 practice
 these
 small
 
subsistence
 farms
 were
 synonymous
 with
 poverty
 and
 produced
 neither
 adequate
 food
 nor
 
shelter
 for
 their
 owners
 (White,
 1980).
 
Strawberry
 production
 is
 a
 great
 example
 of
 how
 European
 row
 cropping
 agriculture
 

 

 

Page
 
25
 


 

 

was
 not
 sustainable
 on
 the
 South
 Puget
 Sound
 prairie
 landscape.
 
 
 After
 World
 War
 I
 up
 to
 
3,000
 acres
 of
 Grand
 Mound
 prairie
 were
 converted
 to
 commercial
 strawberry
 production
 
(Purcell,
 1987).
 
 Interestingly
 enough
 berries
 were
 a
 predominate
 Salish
 food
 source
 and
 as
 
Upper
 Chehalis
 elder
 Mary
 Heck
 testified,
 were
 abundant
 on
 the
 prairie
 landscape;
 
 
 
 
We
 had
 kinikinik
 berries,
 black
 berries,
 wild
 raspberries,
 and
 crab
 apples,
 salmon
 
berries,
 sala
 berries,
 and
 another
 berry
 called
 Kamotlk…They
 had
 june
 berries,
 wild
 
currents,
 black
 cap
 raspberries
 and
 lots
 of
 blueberries,
 and
 thimble
 berries
 grow
 along
 
the
 edge
 of
 the
 prairies.
 
 (Storm,
 2004)
 

 
When
 asked
 if
 they
 has
 strawberries
 she
 says
 “there
 was
 so
 much
 strawberries
 you
 can
 smell
 it
 
from
 a
 distance”
 (Storm
 2004).
 
 While
 the
 native
 strawberry
 (Fragaria
 virginiana)
 was
 well
 
adapted
 to
 the
 prairie
 landscape,
 commercial
 strawberries
 were
 not.
 
 Given
 high
 production
 
cost,
 low
 soil
 fertility,
 and
 erratic
 strawberry
 prices,
 production
 on
 Grand
 Mound
 prairie
 proved
 
to
 be
 unsustainable
 and
 the
 endeavor
 was
 abandoned
 by
 the
 1940’s
 (Purcell,
 1987).
 
 While
 
berries
 were
 a
 main
 food
 crop
 produced
 under
 the
 Salish
 system,
 their
 production
 was
 not
 
sustainable
 utilizing
 western
 agriculture
 methods.
 
 
 
 
 
Development
 and
 fragmentation
 of
 the
 prairie
 landscape
 did
 not
 stop
 in
 the
 19th
 
century
 in
 fact
 it
 continues
 to
 this
 day.
 
 In
 the
 south
 Puget
 Sound
 region,
 prairie
 soils
 primarily
 
exist
 in
 five
 counties
 Grays
 Harbor,
 Thurston,
 Lewis,
 Mason
 and
 Pierce
 (Crawford
 and
 Hall,
 
1997).
 Figure
 (C.)
 illustrates
 the
 population
 growth
 of
 these
 five
 counties
 since
 1900.
 
 Between
 
1900
 and
 1920
 population
 in
 Pierce,
 Thurston,
 Lewis
 and
 Grays
 Harbor
 more
 than
 doubled
 from
 
roughly
 100,000
 to
 250,000.
 
 During
 this
 time
 much
 of
 the
 prairie
 landscape
 was
 transformed
 
by
 the
 plow
 and
 tractor
 for
 small
 subsistence
 farms
 (Purcell,
 1987).
 
 Another
 population
 boom
 
was
 experienced
 between
 1960
 and
 1980
 as
 the
 populations
 of
 these
 counties
 increased
 by
 
another
 300,000.
 
 Housing
 development
 intensified
 as
 developers
 were
 once
 again
 seeking
 

 

 

Page
 
26
 


 

 

relatively
 cheap,
 flat
 and
 clear
 land
 to
 develop
 (Purcell,
 1987).
 
 While
 development
 and
 
fragmentation
 have
 contributed
 to
 the
 loss
 of
 habitat
 and
 connectivity
 between
 prairie
 
landscapes,
 they
 are
 not
 the
 only
 threat
 to
 biodiversity
 and
 may
 not
 even
 be
 the
 greatest.
 
 
 
 
 


 
Invasive
 Species
 
Today,
 hundreds
 to
 thousands
 of
 non-­‐indigenous
 species
 including
 invertebrates,
 
vertebrates,
 plants,
 bacteria
 and
 fungi
 have
 become
 established
 in
 all
 but
 the
 most
 remote
 
areas
 of
 the
 planet
 (Ricciardi
 et
 al.,
 2000).
 
 The
 south
 Puget
 Sound
 prairie
 landscape
 is
 no
 
exception.
 
 As
 a
 result
 of
 European
 settlement,
 thousands
 of
 non-­‐indigenous
 species
 were
 
introduced
 on
 the
 prairie
 landscape.
 
 The
 purposeful
 and
 inadvertent
 introduction
 of
 non-­‐
indigenous
 species
 has
 been
 detrimental
 to
 the
 bunch
 grass
 prairie
 ecosystem
 (South
 Sound
 
Prairies,
 2010).
 
 Purposefully,
 settlers
 planted
 non-­‐indigenous
 plants
 mainly
 for
 ornamental
 and
 
agricultural
 purposes.
 
 Inadvertently,
 non-­‐indigenous
 species
 were
 transported
 along
 road
 and
 
railways,
 through
 farm
 fields
 and
 even
 the
 ballast
 of
 ships
 (White,
 1980).
 
 
 
Agriculture
 was
 perhaps
 the
 greatest
 source
 of
 non-­‐indigenous
 species.
 
 Beside
 the
 
plants
 that
 farmers
 were
 intending
 to
 grow
 they
 often
 grew
 weedy
 species
 as
 well.
 
 For
 
example;
 
 
 
In
 1865,
 Granville
 Haller,
 who
 owned
 a
 farm
 near
 Oak
 Harbor,
 examined
 391
 lbs
 of
 seed
 
wheat.
 
 He
 estimated
 it
 to
 be
 one-­‐third
 waste,
 “barley,
 oats,
 buckwheat,
 and
 peas
 
besides
 an
 abundance
 of
 cheet
 and
 smut”
 (White,
 1980).
 

 
Weeds
 are
 an
 inevitable
 result
 of
 trying
 to
 restrict
 the
 landscape
 to
 a
 single
 species.
 
 While
 
some
 of
 these
 non-­‐indigenous
 species
 failed
 to
 colonize
 or
 have
 maintained
 relatively
 small
 and
 
benign
 populations,
 other
 species
 possess
 traits
 that
 cause
 us
 to
 label
 them
 as
 weedy,
 noxious
 


 

 

Page
 
27
 


 

 

or
 invasive.
 
 In
 general,
 only
 about
 1%
 of
 all
 introduced
 species
 become
 invasive
 (Mooney
 et
 al.,
 
2001).
 
 Yet
 this
 1%
 causes
 severe
 economic
 and
 environmental
 harm.
 
 
 
 
The
 difference
 between
 a
 non-­‐indigenous
 or
 introduced
 species
 and
 an
 invasive
 species
 
is
 the
 value
 to
 humans.
 
 The
 earth
 supports
 a
 massive
 array
 of
 ecosystems,
 which
 are
 critical
 for
 
sustaining
 life
 and
 provide
 direct
 value
 to
 humans
 through
 the
 goods
 and
 services
 they
 provide
 
(Malcom
 and
 Pitelka,
 2000).
 
 Invasive
 species
 degrade
 this
 value.
 
 The
 National
 Invasive
 Species
 
Information
 Center
 (NISIC)
 defines
 an
 invasive
 species
 as;
 
 
a
 species
 that
 is
 1)
 non-­‐native
 (or
 alien)
 to
 the
 ecosystem
 under
 consideration
 and
 2)
 
whose
 introduction
 causes
 or
 is
 likely
 to
 cause
 economic
 or
 environmental
 harm
 or
 
harm
 to
 human
 health
 (Executive
 Order
 13112,
 1999).
 (NISIC,
 2010)
 

 
Invasive
 species
 threaten
 national
 economies,
 human
 health,
 and
 global
 biodiversity
 (Simberloff
 
et
 al.,
 2005).
 
 In
 2000,
 the
 economic
 impact
 of
 invasive
 species
 was
 estimated
 to
 exceed
 $138
 
billion
 a
 year
 (Rossman,
 2001).
 
 In
 the
 agriculture
 sector
 alone
 25%
 of
 the
 gross
 product
 is
 lost
 
to
 a
 growing
 variety
 of
 invasive
 species
 (Ricciardi,
 2000).
 
 
 Across
 the
 globe
 invasive
 species
 are
 
recognized
 as
 a
 considerable
 threat
 to
 biodiversity
 and
 can
 profoundly
 alter
 ecosystem
 
structure
 and
 function
 (Longsdale,
 1999).
 On
 the
 south
 Puget
 Sound
 prairie
 landscape
 invasive
 
species
 are
 the
 greatest
 threat
 to
 biodiversity
 and
 have
 drastically
 altered
 the
 composition
 and
 
functioning
 of
 the
 ecosystem
 (South
 Sound
 Prairies,
 2010).
 
 
 
By
 definition,
 an
 invasive
 species
 has
 competitive
 traits
 that
 enable
 the
 invader
 to
 
displace
 native
 species
 (Radosevich
 et
 al.,
 2003).
 
 Invasive
 species
 flourished
 on
 the
 prairies
 due
 
to
 the
 massive
 disturbances
 of
 grazing,
 plowing
 and
 the
 repression
 of
 fire
 (Purcell,
 1987).
 
 
 
Invasive
 species
 were
 able
 to
 colonize
 and
 persist
 on
 the
 prairies
 because
 they
 possess
 
characteristics
 that
 enable
 them
 to
 out-­‐compete
 native
 flora.
 
 Invasive
 species
 often
 display
 


 

 

Page
 
28
 


 

 

phenotypic
 plasticity,
 or
 the
 ability
 of
 an
 organism
 to
 change
 its
 phenotype
 in
 response
 to
 the
 
environment
 (Sakai
 et
 al.,
 2001).
 
 Another
 important
 feature
 of
 many
 invasive
 species
 on
 the
 
prairies
 is
 that
 they
 are
 effective
 dispersers
 and
 have
 high
 reproductive
 rates
 (Malcolm
 and
 
Pitelka,
 2000).
 
 In
 particular,
 Scotch
 broom
 (Cytisus
 scoparius),
 has
 displayed
 an
 enormous
 
ability
 to
 dominate
 the
 prairie
 landscape
 and
 reduce
 the
 diversity
 and
 density
 of
 native
 species.
 
 
 
 
Scotch
 broom
 (C.
 scoparius)
 is
 one
 of
 the
 prominent
 invasive
 species
 that
 threatens
 
biodiversity
 on
 the
 south
 Puget
 Sound
 prairie
 landscape.
 Scotch
 broom
 (C.
 scoparius)
 is
 
naturalized
 in
 lowland
 areas
 throughout
 western
 Washington
 (Washington
 State
 Noxious
 Weed
 
Control
 Board,
 2010).
 
 It
 is
 a
 long-­‐lived,
 bushy
 shrub
 with
 stiff,
 slender
 branches
 that
 can
 grow
 
to
 be
 up
 to
 12
 feet
 tall
 (USDA
 Forest
 Service,
 2009).
 In
 its
 European
 range,
 it
 is
 considered
 a
 
minor
 weed
 (Sheppard
 et
 al.,
 2002),
 however,
 in
 North
 America
 it
 is
 one
 of
 the
 most
 common
 
and
 widespread
 invasive
 species
 impacting
 several
 plant
 communities
 throughout
 the
 Puget
 
Trough
 (USDA
 Forest
 Service,
 2009)
 .
 The
 first
 recorded
 specimen
 of
 scotch
 broom
 (C.
 
scoparius)
 was
 collected
 from
 a
 Seattle
 garden
 in
 1888,
 and
 has
 been
 regarded
 as
 a
 noxious
 
pest
 in
 rangelands
 and
 natural
 areas
 since
 (Parker,
 1997).
 On
 the
 south
 Puget
 Sound
 prairie
 
landscape,
 it
 displaces
 and
 impacts
 threatened
 species
 such
 as
 golden
 paintbrush
 (Castilleja
 
levisecta)
 and
 Taylor’s
 Checkerspot
 
 (Euphydryas
 editha
 taylori)
 (USDA
 Forest
 Service
 2009).
 
 Its
 
effects
 are
 compounded
 by
 its
 nitrogen
 (N)
 fixing
 abilities,
 which
 often
 facilitate
 a
 new
 cohort
 of
 
vegetation.
 A
 study
 focusing
 on
 three
 Puget
 Trough
 prairies
 found
 that
 invasion
 by
 Scotch
 
broom
 (C.
 scoparius)
 is
 associated
 with
 an
 increase
 in
 total
 N
 and
 N
 availability,
 an
 increase
 in
 
cover
 of
 other
 invasive
 species
 and
 a
 decline
 in
 native
 species
 richness
 (Parker,
 2000).
 
 While
 
eradication
 of
 scotch
 broom
 (C.
 scoparius)
 may
 never
 be
 possible,
 if
 it
 is
 not
 controlled
 it
 will
 


 

 

Page
 
29
 


 

 

continue
 to
 degrade
 the
 prairie
 landscape.
 
 
 

 

The
 U.S.
 policies
 to
 promote
 settlement
 of
 western
 Washington
 facilitated
 the
 

destruction
 of
 bunchgrass
 prairies.
 
 The
 land
 management
 techniques
 of
 settlers
 were
 
incongruent
 with
 that
 of
 the
 Salish,
 fire
 suppression,
 agriculture,
 and
 the
 introduction
 of
 
invasive
 species
 decimated
 the
 prairie
 ecosystem.
 
 Ultimately
 agriculture
 proved
 unsuccessful,
 
but
 as
 the
 population
 of
 western
 Washington
 continues
 to
 grow,
 development,
 fire
 suppression
 
and
 the
 introduction
 of
 invasive
 species
 persists.
 There
 is
 another
 threat
 to
 prairies,
 a
 silent
 
threat
 which
 exacerbates
 the
 current
 challenge
 bunchgrass
 prairies
 face.
 
 The
 industrialized
 
processes
 that
 fueled
 western
 expansionism
 also
 released
 an
 extraordinary
 amount
 of
 carbon
 
dioxide
 (CO2)
 into
 the
 atmosphere,
 the
 effects
 of
 which
 we
 are
 still
 trying
 to
 understand
 today.
 
 
 
 


 

 

Page
 
30
 


 

 

III.
 Climate
 Change
 
Gases
 in
 the
 atmosphere
 absorb
 and
 emit
 infrared
 radiation,
 essentially
 trapping
 heat
 
within
 the
 troposphere
 of
 the
 earth
 creating
 a
 greenhouse
 effect.
 
 Amounts
 of
 greenhouse
 
gases
 (GHG)
 are
 increasing
 as
 a
 result
 of
 industrialized
 human
 activities—since
 1750,
 carbon
 
dioxide
 (CO2)
 has
 increased
 32%,
 and
 methane
 has
 increased
 150%
 (Climate
 Impacts
 Group,
 
2010).
 The
 influx
 of
 these
 gases
 is
 primarily
 responsible
 for
 a
 temperature
 increase
 of
 .74
 +
 or
 -­‐
 
.18
 degrees
 Celsius
 over
 the
 course
 of
 the
 20th
 century.
 
 Most
 governments
 have
 signed
 the
 
Kyoto
 Protocol
 in
 hopes
 to
 curtail
 GHG
 emissions
 before
 levels
 in
 the
 atmosphere
 reach
 
catastrophic
 levels.
 
 Over
 the
 past
 20
 years
 the
 atmospheric
 CO2
 growth
 rate
 has
 more
 than
 
doubled.
 
 As
 global
 economic
 activity
 increases
 and
 becomes
 more
 carbon
 intensive,
 significant
 
global
 reductions
 seem
 a
 distant
 goal
 at
 best
 (Heller
 and
 Zavaleta,
 2008).
 
 Anthropogenic
 
climate
 change
 is
 unequivocal
 and
 unavoidable;
 the
 question
 to
 be
 asked
 then
 is
 how
 much
 
change
 can
 be
 expected
 over
 the
 next
 century.
 
 
 

 
 
 
 

General
 Circulation
 Modeling
 
There
 is
 uncertainty
 in
 the
 forecasting
 of
 future
 climate
 scenarios.
 
 Currently,
 scientists
 
utilize
 General
 Circulation
 Models
 (GCM’s),
 which
 are
 based
 on
 mathematical
 equations
 of
 a
 
rotating
 sphere
 with
 thermodynamic
 inputs
 for
 various
 energy
 sources
 (radiation,
 latent
 heat).
 
Accurate
 models
 must
 take
 into
 account
 a
 complexity
 of
 interconnected
 biological,
 chemical,
 
and
 fluid
 dynamic
 variables
 (Crumpacker
 et
 al.,
 2001).
 
 All
 GCM’s
 contain
 assumptions
 not
 just
 
about
 the
 behavior
 of
 the
 Earth’s
 atmosphere
 and
 oceans
 but
 also
 in
 their
 forecast
 of
 future
 
anthropogenic
 growth
 and
 land
 development
 (Salmun
 et
 al.,
 2006).
 
 GCM’s
 are
 evolving,
 


 

 

Page
 
31
 


 

 

becoming
 more
 precise
 and
 accurate—it
 is
 the
 predicting
 of
 human
 actions
 in
 which
 the
 onus
 
of
 uncertainty
 rests.
 
 
 
 
The
 Intergovernmental
 Panel
 on
 Climate
 Change
 (IPCC)
 has
 developed
 a
 number
 of
 
scenarios
 to
 estimate
 future
 anthropogenic
 Green
 House
 Gas
 (GHG)
 emissions.
 
 The
 possibility
 
that
 any
 one
 scenario
 will
 occur
 is
 unlikely,
 but
 together
 they
 encompass
 the
 current
 range
 of
 
future
 GHG
 emissions
 arising
 from
 sources
 such
 as
 demographic,
 social,
 economic
 and
 
technological
 developments
 (IPCC,
 2007).
 
 For
 the
 wide
 range
 of
 GHG
 emissions
 scenarios,
 the
 
Earth’s
 mean
 surface
 temperature
 is
 projected
 to
 warm
 by
 1.4
 to
 5.8
 degrees
 Celsius
 as
 
compared
 to
 1990
 average
 mean
 global
 temperatures
 by
 the
 end
 of
 the
 21st
 century
 (PEW,
 
2003).
 
 The
 2004
 IPCC
 worst
 case
 scenarios
 projections
 were
 actually
 surpassed
 in
 2007,
 
indicating
 that
 under
 a
 “business
 as
 usual”
 scenario
 a
 1.4
 degrees
 Celsius
 rise
 is
 all
 but
 certain
 
and
 a
 temperature
 increase
 of
 5.8
 degrees
 Celsius
 is
 more
 than
 probable
 by
 the
 year
 2100
 
(IPCC,
 2007).
 
 
 
 
Climate
 change
 is
 not
 uniform
 though
 and
 will
 occur
 at
 different
 rates
 for
 different
 
regions.
 
 The
 most
 notable
 areas
 of
 warming
 are
 in
 the
 land
 masses
 of
 northern
 regions
 (North
 
America
 and
 North/Central
 Asia),
 which
 exceed
 global
 mean
 warming
 in
 each
 climate
 model
 by
 
more
 than
 40%
 (Climate
 Impacts
 Group,
 2010).
 In
 contrast,
 warming
 is
 less
 than
 the
 global
 
mean
 change
 in
 South
 and
 Southeast
 Asia
 in
 summer
 and
 in
 southern
 South
 America
 in
 winter
 
(Climate
 Impacts
 Group,
 2010).
 
 So
 what
 does
 climate
 change
 mean
 for
 the
 Pacific
 Northwest
 
and
 more
 specifically
 what
 affect,
 if
 any,
 will
 climate
 change
 have
 on
 the
 south
 Puget
 Sound
 
prairie
 landscape?
 
 
 
 
 
 
 


 


 

 

Page
 
32
 


 

 

Pacific
 Northwest
 
In
 the
 Pacific
 Northwest,
 the
 effects
 of
 climate
 change
 over
 the
 last
 century
 have
 been
 
fairly
 uniformed
 and
 widespread
 (Climate
 Impacts
 Group,
 2010).
 The
 Pacific
 Northwest
 has
 
been
 getting
 warmer
 and
 wetter,
 and
 these
 trends
 will
 continue
 and
 accelerate
 over
 the
 next
 
century
 (Climate
 Impact
 Groups,
 2010).
 Overall,
 historical
 trends
 from
 the
 20th
 century
 of
 
temperature,
 precipitation
 and
 snow
 pack
 demonstrate
 that
 the
 Pacific
 Northwest
 is
 having
 
longer,
 drier
 summers
 and
 shorter,
 wetter
 winters.
 
 The
 past
 80
 years
 of
 observation
 clearly
 
indicate
 a
 general
 increase
 in
 temperature
 and
 precipitation
 across
 the
 Pacific
 Northwest.
 
 
 
 
With
 greater
 technical
 abilities
 than
 even
 just
 a
 few
 years
 ago
 projecting
 multiple
 GCM
 
simulations
 or
 ensembles
 and
 presuming
 that
 the
 distribution
 of
 future
 changes
 is
 well
 
represented
 within
 is
 now
 common
 practice
 (Mote
 et
 al.,
 2009).
 
 In
 2008
 Climate
 Impacts
 
Group,
 an
 interdisciplinary
 research
 group
 studying
 the
 impacts
 of
 global
 climate
 change
 in
 the
 
Pacific
 Northwest
 projected
 temperature
 and
 precipitation
 changes
 based
 upon
 20
 global
 
models
 utilizing
 the
 B1
 and
 A1B1
 IPCC
 emission
 scenarios.
 
 The
 averaging
 of
 these
 models
 
projects
 an
 increase
 in
 overall
 temperature
 on
 the
 order
 of
 0.2°-­‐1.0°F
 (0.1°-­‐0.6°C)
 per
 decade
 
throughout
 the
 21st
 century
 (Climate
 Impacts
 Group,
 2010).
 Small
 mean
 increases
 in
 
temperature
 reflect
 higher
 variability
 in
 temperature
 ranges.
 
 Temperature
 increases
 will
 occur
 
across
 all
 seasons
 with
 the
 largest
 increases
 in
 summer
 (Climate
 Impacts
 Group,
 2010).
 
 
Temperature
 increases
 are
 expected
 to
 accelerate
 in
 the
 latter
 half
 of
 the
 century,
 yet
 there
 is
 
higher
 variability
 during
 this
 time
 frame
 based
 upon
 which
 GHG
 scenario
 was
 modeled
 (Climate
 
Impacts
 Group,
 2010).
 
 Projected
 changes
 in
 annual
 precipitation
 are
 less
 certain.
 
 Some
 GCM’s
 
show
 a
 decrease
 of
 up
 to
 10%
 while
 others
 show
 an
 increase
 of
 20%
 by
 2080
 compared
 to
 


 

 

Page
 
33
 


 

 

1970-­‐1990
 (Climate
 Impacts
 Group,
 2010).
 The
 majority
 of
 emission
 scenarios
 yield
 decreases
 in
 
summer
 precipitation
 and
 increases
 in
 winter
 precipitation,
 with
 a
 small
 net
 average
 increase
 of
 
1-­‐2%
 in
 overall
 precipitation
 compared
 to
 1970-­‐1990
 (Climate
 Impacts
 Group,
 2010).
 
 While
 
ensemble
 models
 project
 a
 wide
 distribution
 of
 possible
 outcomes,
 in
 order
 to
 better
 
understand
 how
 fine
 scale
 weather
 and
 land
 surface
 processes
 will
 respond
 to
 climate
 changes,
 
a
 more
 precise
 regional
 model
 with
 higher
 meso-­‐scale
 resolution
 is
 necessary
 (Elsner
 et
 al.,
 
2009).
 
 
 
The
 ECHAM5/MPI-­‐OM
 (European
 Centre
 for
 Medium-­‐Range
 Weather
 Forecast
 5th
 
generation
 and
 Max
 Planck
 Institute
 Ocean
 Model)
 is
 one
 of
 the
 finest
 scale
 (15
 km
 grid
 
spacing)
 and
 most
 accurate
 models
 completed
 for
 Washington
 state
 in
 2008.
 
 The
 model
 
assumed
 the
 A2
 IPCC
 emission
 scenario,
 which
 is
 a
 relatively
 aggressive
 outlook
 of
 GHG
 
emissions,
 and
 completed
 projections
 for
 four
 decades
 1990-­‐1999,
 2020-­‐2029,
 2045-­‐2054,
 and
 
2090-­‐2099.
 The
 ECHAM5/MPI-­‐OM
 model
 has
 relatively
 high
 horizontal
 and
 vertical
 resolution
 
and
 produces
 realistic
 synoptic
 scale
 patterns
 in
 comparison
 to
 other
 coarser
 models
 (Salathe
 
et
 al.,
 2008).
 
 
 
The
 predictions
 for
 temperature
 and
 precipitation
 change
 of
 the
 ECHAM5/MPI-­‐OM
 
model
 contain
 a
 finer
 level
 of
 detail
 than
 the
 ensemble
 of
 models.
 In
 particular,
 the
 combined
 
effects
 of
 decreased
 albedo
 and
 increased
 down
 welling
 long
 wave
 radiation
 amplified
 
temperature
 increases
 under
 an
 A2
 scenario.
 
 
 In
 addition
 to
 the
 domain
 wide
 warming
 0.2°-­‐
1.0°F
 (0.1°-­‐0.6°C)
 per
 decade,
 the
 ECHAM5/MPI-­‐OM
 produces
 amplified
 warming
 along
 the
 
flanks
 of
 the
 Cascade
 Mountain
 Range,
 this
 pattern
 is
 well
 established
 by
 2020
 and
 yields
 to
 
considerable
 localized
 warming
 by
 the
 2090s
 (Salathe
 et
 al.,
 2008).
 
 As
 snow
 pack
 diminishes
 


 

 

Page
 
34
 


 

 

less
 radiation
 is
 reflected
 into
 the
 atmosphere
 and
 is
 absorbed
 by
 the
 landscape.
 
 During
 the
 
spring
 season,
 enhanced
 warming
 will
 move
 upslope
 following
 the
 snowline
 and
 maximum
 
warming
 will
 be
 found
 along
 the
 crest
 of
 the
 Cascade
 Range
 (Salathe
 et
 al.,
 20008).
 
 Along
 the
 
coastal
 areas
 of
 the
 Puget
 Sound
 the
 regional
 model
 showed
 considerably
 less
 warming
 of
 
maximum
 daytime
 temperatures
 but
 increased
 night
 time
 temperatures
 (Salathe
 et
 al.,
 2008).
 
The
 greater
 warming
 of
 the
 continental
 interior,
 relative
 to
 the
 oceans
 will
 increase
 low
 level
 
cloudiness
 amplifying
 the
 downwelling
 of
 infrared
 radiation
 at
 night,
 producing
 a
 warming
 
effect
 after
 the
 sun
 goes
 down
 (Salathe
 et
 al.,
 2008).
 The
 ECHAM/MPI-­‐OM
 illustrates
 that
 the
 
rate
 of
 warming
 will
 vary
 throughout
 the
 seasons,
 across
 the
 landscape
 and
 even
 over
 the
 
course
 of
 a
 single
 day.
 
 
 
 
 
 

 

The
 global
 models
 indicate
 a
 small
 increase
 in
 precipitation
 over
 the
 Pacific
 Northwest
 

during
 the
 months
 of
 November
 through
 January.
 
 While
 amounts
 and
 seasonality
 are
 similar,
 
the
 ECHAM5/MPI-­‐OM
 provides
 greater
 detail
 about
 where
 we
 can
 expect
 increased
 
precipitation
 (Salathe
 et
 al.,
 2008).
 
 The
 ECHAM5/MPI-­‐OM
 model
 captures
 effects
 such
 as
 large-­‐
scale
 moisture
 flux,
 frequency
 and
 intensity
 of
 large-­‐scale
 storms,
 changes
 in
 large-­‐scale
 
circulation
 and
 interactions
 with
 the
 surface
 orography
 (Salathe
 et
 al.,
 2008).
 
 The
 model
 
illustrates
 that
 regional
 topography
 will
 have
 a
 significant
 impact
 on
 where
 increased
 
precipitation
 will
 fall.
 
 The
 shift
 to
 more
 onshore
 flow
 increases
 the
 orographic
 precipitation
 
along
 the
 north-­‐south
 ridges
 of
 the
 Cascade
 Range
 (Salathe
 et
 al.,
 2008).
 
 Increased
 
precipitation
 analogous
 to
 increased
 temperature
 will
 occur
 mainly
 at
 higher
 altitudes
 along
 the
 
Cascade
 and
 Olympic
 Mountain
 Ranges.
 
 
 
 
 
 
 
In
 the
 Pacific
 Northwest,
 the
 climate
 is
 changing.
 
 Average
 annual
 temperature
 and
 


 

 

Page
 
35
 


 

 

precipitation
 has
 increased
 along
 with
 extreme
 heat
 and
 storm
 events.
 
 Climatologists
 are
 
confident
 that
 the
 climate
 will
 continue
 to
 get
 warmer
 and
 wetter.
 
 Climate
 change
 will
 be
 
accelerated
 at
 higher
 elevations
 but
 this
 does
 not
 diminish
 the
 effects
 on
 the
 lowlands
 of
 
western
 Washington.
 
 Understanding
 the
 effect
 that
 climate
 change
 will
 have
 on
 vegetational
 
communities
 is
 critical
 for
 conservation
 and
 restoration
 efforts
 on
 the
 south
 Puget
 Sound
 
prairie
 landscape.
 
 
 
 

 

Range
 Movement
 
Globally,
 the
 IPCC
 evaluated
 the
 effect
 of
 climate
 change
 on
 biological
 systems
 by
 
assessing
 2,500
 published
 studies.
 
 Forty-­‐four
 studies
 met
 the
 following
 criteria:
 twenty
 or
 more
 
years
 of
 data,
 measured
 temperature
 as
 one
 of
 the
 variables,
 and
 had
 a
 statistically
 significant
 
correlation
 (IPCC,
 2007).
 
 Approximately
 80%
 showed
 differences
 in
 the
 biological
 parameter
 
measured
 (e.g.,
 start
 and
 end
 of
 breeding
 season,
 shifts
 in
 migration
 patterns,
 shifts
 in
 animal
 
and
 plant
 distributions
 and
 changes
 in
 body
 size)
 in
 the
 manner
 expected
 with
 climate
 change
 
(IPCC,
 2007).
 Climate
 change
 is
 currently
 and
 has
 been
 for
 some
 time
 impacting
 the
 distribution
 
of
 flora
 and
 fauna
 across
 the
 globe.
 
 
 
In
 Washington,
 historical
 and
 scientific
 studies
 have
 shown
 that
 climate
 change
 is
 
leading
 to
 vegetaional
 shifts.
 Plant
 migrations
 due
 to
 climate
 have
 been
 recorded
 through
 
photographic
 evidence
 and
 tree
 coring
 data
 at
 high
 altitudes
 in
 Olympic
 National
 Park
 and
 
Mount
 Rainer
 National
 Park.
 
 Tree
 establishment
 in
 subalpine
 meadows,
 particularly
 subalpine
 
fir
 (Abies
 lasiocarpa)
 on
 drier
 slopes,
 has
 been
 documented
 in
 several
 studies
 which;
 purposely
 
selected
 relatively
 non-­‐flammable
 north
 facing
 sites
 showing
 no
 signs
 of
 recent
 fire,
 avalanches
 


 

 

Page
 
36
 


 

 

or
 rock
 slides
 (Woodward
 et
 al.,
 1995,
 Rochefort
 and
 Peterson,
 1996).
 Warmer,
 drier
 summers
 
from
 1956-­‐1985—which
 are
 now
 attributed
 to
 climate
 change—have
 created
 conditions
 
favorable
 for
 subalpine
 fir
 
 (A.
 lasiocarpa)
 to
 establish
 on
 the
 southwest
 slopes
 of
 the
 Olympics,
 
and
 west
 slopes
 of
 Mt.
 Rainer
 (Woodward
 et
 al.,
 1995;
 Rochefort
 and
 Peterson,
 1996).
 
 
 While
 
the
 re-­‐distribution
 of
 plants
 at
 high
 altitudes
 due
 to
 climate
 change
 is
 evident,
 shifts
 that
 may
 
be
 occurring
 on
 the
 south
 Puget
 Sound
 prairie
 landscape
 are
 less
 conclusive.
 
 
 
Paleontological
 evidence
 suggests
 it
 is
 unlikely
 that
 species
 will
 move
 at
 the
 same
 rates
 
and
 that
 the
 composition
 of
 most
 ecosystems
 will
 very
 likely
 be
 significantly
 altered
 (IPCC,
 
2007).
 
 Climate
 change
 scenarios
 based
 on
 GCM’s
 can
 be
 linked
 to
 biological
 models
 to
 predict
 
these
 plant
 migrations
 (Crumpacker
 et
 al.,
 2001).
 
 These
 biological
 GCM’s
 are
 important
 guides
 
to
 understanding
 the
 migration
 of
 plant
 species
 in
 response
 to
 climate
 change,
 such
 as
 those
 
related
 to
 decreased
 fertility
 and
 seedling
 viability
 of
 ecologically
 important
 plant
 species
 near
 
their
 range
 limits
 (Crumpacker
 et
 al.,
 2001).
 
 Fine
 scale
 predictions
 of
 how
 ecosystems
 will
 
change
 are
 difficult
 to
 gather
 because
 of
 topographic
 complexity,
 but
 most
 GCM’s
 show
 that
 
changes
 in
 ecosystems
 will
 occur
 as
 complex
 small-­‐scale
 movements
 rather
 than
 broad
 
northward
 shifts
 (Malcolm
 and
 Pitelka,
 2000).
 
 
 
Unfortunately,
 the
 south
 Puget
 Sound
 prairie
 landscape
 is
 not
 well
 represented
 in
 even
 
the
 finest
 scale
 biological
 models
 for
 two
 reasons.
 
 First
 the
 prairie
 landscape
 is
 a
 seral
 
grassland
 community
 maintained
 through
 an
 anthropogenic
 fire
 regime
 that
 is
 not
 represented
 
in
 the
 models.
 
 Secondly,
 the
 extent
 of
 the
 existing
 prairie
 and
 oak
 woodland
 preserves
 is
 small
 
relative
 to
 the
 scale
 of
 even
 the
 most
 precise
 models
 to
 date.
 
 Vegetation
 models
 do
 provide
 
broad
 projections
 about
 how
 the
 Western
 Forest
 Zone
 surrounding
 the
 prairie
 landscape
 will
 


 

 

Page
 
37
 


 

 

react
 under
 specific
 GHG
 emission
 scenarios
 and
 GCM’s.
 
 Understand
 how
 the
 forest
 responds
 
to
 climate
 change
 will
 facilitate
 an
 appreciation
 for
 how
 the
 prairies
 might
 react
 in
 relation
 to
 
the
 forest.
 
 
 
 
The
 vegetation
 type
 modeled
 throughout
 the
 Puget
 Trough
 region
 is
 Maritime
 Conifer
 
Forest,
 which
 is
 comprised
 mainly
 of
 Douglas-­‐fir
 (P.
 menziesii)
 and
 western
 hemlock
 (T.
 
heterophylla),
 yet
 that
 might
 change
 under
 future
 climate
 scenarios
 (Rogers,
 2009,
 Elsner
 et
 al.,
 
2009).
 
 Depending
 upon
 which
 GHG
 and
 GCM
 is
 utilized
 the
 maritime
 conifer
 forest
 of
 the
 
Puget
 Trough
 is
 projected
 to
 undergo
 large
 scale
 conversions
 similar
 to
 what
 the
 region
 
experienced
 between
 12,000
 and
 3,500
 yrs.
 B.P.
 with
 the
 expansion
 of
 xerophytic
 or
 grassland
 
taxa
 (Rogers,
 2009).
 Key
 species
 within
 the
 lowland
 forest
 will
 have
 a
 decreased
 competitive
 
ability
 due
 to
 loss
 of
 growth,
 vigor
 and
 large-­‐scale
 disturbances
 (Little,
 2006).
 
 By
 2060,
 under
 a
 
moderate
 GHG
 scenario
 it
 is
 likely
 that
 Douglas-­‐fir
 (P.
 menziesii)
 will
 have
 decreased
 juvenile
 
survival
 rates
 due
 to
 increased
 evapotranspiration
 during
 the
 summer
 months
 throughout
 the
 
Puget
 Trough
 (Elsner
 et
 al.,
 2009).
 
 The
 rate
 and
 composition
 of
 forest
 conversion
 in
 response
 
to
 climate
 change
 will
 be
 driven
 more
 by
 disturbance
 than
 by
 gradual
 changes
 in
 tree
 
population
 and
 will
 likely
 be
 more
 rapid
 than
 projected
 models
 of
 future
 species
 range
 shifts
 
indicate
 (Elsner
 et
 al.,
 2009).
 
 
Changes
 in
 the
 frequency,
 intensity,
 extent
 and
 locations
 of
 disturbances
 will
 affect
 the
 
rate
 at
 which
 existing
 ecosystems
 will
 be
 replaced
 by
 new
 plant
 assemblages
 (IPCC,
 2007).
 
 The
 
natural
 disturbances,
 which
 have
 the
 most
 significant
 impact
 on
 forests,
 include
 fire,
 drought,
 
introduced
 species,
 insect/pathogen
 outbreaks,
 hurricanes,
 windstorms,
 ice
 storms
 and
 
landslides
 (Dale
 et
 al.,
 2001).
 
 In
 the
 Pacific
 Northwest,
 windstorms
 and
 fire
 are
 of
 particular
 


 

 

Page
 
38
 


 

 

concern—in
 many
 cases,
 large-­‐scale
 disturbances
 such
 as
 fire
 or
 windstorms
 will
 remove
 much
 
of
 the
 over
 story
 and
 facilitate
 a
 new
 cohort
 of
 vegetation
 (Little,
 2007).
 
 The
 regeneration
 
phase
 after
 a
 disturbance
 will
 be
 the
 key
 stage
 at
 which
 species
 will
 compete
 and
 establish
 in
 a
 
warmer
 climate,
 thus
 determining
 the
 composition
 of
 future
 ecosystems
 (Little,
 2007).
 
 We
 
must
 therefore
 interpret
 vegetation
 shifts
 in
 the
 context
 of
 local
 factors,
 such
 as
 seed
 sources,
 
migration
 pathways,
 successional
 status,
 real-­‐world
 disturbance
 history
 and
 potential
 future
 
disturbances
 (Rogers,
 2009).
 
 There
 is
 little
 evidence
 to
 suggest
 that
 climate
 change
 will
 
increase
 species
 richness,
 and
 abundant
 evidence
 suggesting
 that
 species
 richness
 will
 decrease
 
(IPCC,
 2007).
 
Climate
 change
 is
 occurring,
 has
 been
 occurring
 and
 will
 continue
 to
 occur
 into
 the
 
future.
 
 General
 circulation
 models
 downscaled
 to
 the
 Pacific
 Northwest
 project
 variations
 in
 
temperature
 and
 precipitations.
 
 Changes
 in
 climate
 will
 significantly
 affect
 vegetation
 
communities
 as
 species
 persist,
 adapt
 or
 migrate
 to
 a
 more
 suitable
 climate.
 
 The
 Idaho-­‐fescue
 
bunchgrass
 ecosystem
 persisted
 when
 the
 climate
 changed
 during
 the
 late
 Holocene,
 but
 that
 
was
 only
 because
 people
 placed
 a
 certain
 value
 upon
 prairie
 species
 and
 maintained
 the
 
bunchgrass
 community
 through
 fire
 and
 harvesting
 practices.
 
 The
 fate
 of
 bunchgrass
 prairies
 
will
 continue
 to
 be
 dependent
 on
 people,
 and
 the
 cultural
 value
 we
 have
 for
 uniqueness
 and
 
diversity.
 
 
 
 
 
 
 
 


 

 

Page
 
39
 


 

 

IV.
 Ecological
 Restoration
 in
 a
 Warming
 World
 
The
 first
 prairies
 were
 a
 result
 of
 climatic
 conditions
 following
 the
 last
 ice
 age.
 
 As
 the
 
climate
 changed
 the
 south
 Puget
 Sound
 prairie
 landscape
 was
 maintained
 by
 a
 framework
 of
 
tribes
 and
 clans.
 
 These
 different
 groups
 were
 united
 by
 a
 common
 cultural
 value
 for
 the
 land
 
and
 shared
 similar
 management
 techniques.
 
 The
 practices
 of
 the
 Salish
 influenced
 the
 
composition,
 structure
 and
 connectivity
 of
 the
 prairie
 landscape
 which
 enabled
 the
 seral
 
grassland
 community
 to
 persist
 even
 as
 climate
 changes
 had
 altered
 the
 natural
 fire
 regime.
 
 As
 
European
 settlers
 moved
 to
 the
 Puget
 Trough
 the
 prairie
 landscape
 was
 developed
 because
 it
 
was
 relatively
 flat
 and
 clear
 of
 trees.
 
 Settlement
 had
 a
 profound
 ecological
 impact;
 agriculture,
 
fire
 suppression
 and
 the
 introduction
 of
 invasive
 species,
 degraded
 the
 functioning
 and
 services
 
that
 the
 prairie
 landscape
 once
 provided.
 
 However,
 there
 is
 another
 chapter
 to
 human
 
management
 of
 the
 prairie
 landscape,
 the
 establishment
 of
 public
 and
 private
 prairie
 preserves
 
and
 the
 growing
 community
 of
 prairie
 practitioners
 dedicated
 to
 conserving
 the
 prairies.
 
 
 
 
Beginning
 in
 the
 1970’s
 prairie
 conservation
 in
 the
 south
 Puget
 Sound
 started
 to
 emerge
 
as
 a
 priority
 for
 a
 conglomerate
 of
 different
 non-­‐profit,
 state
 and
 federal
 agencies.
 
 Alarm
 at
 the
 
rate
 of
 species
 and
 habitat
 loss
 influenced
 a
 myriad
 of
 agencies
 to
 begin
 conserving
 the
 prairies.
 
 
Currently
 there
 are
 17
 different
 Federal,
 State,
 County
 and
 non-­‐profit
 agencies
 collaborating
 as
 
part
 of
 the
 South
 Puget
 Sound
 Prairie
 Landscape
 Working
 Group
 (South
 Sound
 Prairies,
 2009).
 
US
 Fish
 and
 Wildlife
 
 
Natural
 Resources
 Conservation
 Service
 
 
US
 Forest
 Service
 
 
US
 Environmental
 Protection
 Agency
 
 
Ft.
 Lewis
 
 
McChord
 Air
 Force
 Base
 
 
WA
 Department
 of
 Fish
 and
 Wildlife
 
 
WA
 Department
 of
 Natural
 Resources
 
 


 

 

Page
 
40
 

WA
 Department
 of
 Transportation
 
 
Washington
 State
 University
 Vancouver
 
 
Pierce
 County
 
 
Thurston
 County
 Parks
 and
 Recreation
 
 
Port
 of
 Olympia
 
 
The
 Nature
 Conservancy
 of
 Washington
 
Audubon
 Society
 
 
Capitol
 Land
 Trust
 
 
 


 

 

Friends
 of
 Puget
 Prairies
 
 

Wolf
 Haven
 International
 


 
While
 each
 agency
 has
 its
 own
 management
 or
 conservation
 goals
 this
 group
 works
 together
 to
 
share
 expertise,
 develop
 resources
 and
 implement
 future
 conservation
 activities
 on
 the
 prairie
 
and
 oak
 woodlands
 of
 the
 south
 Puget
 Sound
 (South
 Sound
 Prairies,
 2010).
 
 Prairie
 
conservation
 on
 the
 south
 Puget
 Sound
 landscape
 is
 an
 adaptive
 management
 scenario
 as
 this
 
group
 actively
 collects
 and
 disseminates
 information
 to
 maximizes
 resources
 and
 reduce
 
uncertainty
 overtime.
 
 
 
 
 
 
 
 

 

These
 agencies
 have
 been
 successful
 at
 preserving
 and
 restoring
 over
 5,000
 acres
 of
 

prairie
 and
 oak
 woodland
 habitat.
 
 Major
 protected
 areas
 include:
 
 
Mima
 Mounds
 NAP
 WA
 State
 -­‐
 Dept.
 of
 Natural
 Resources
 
 

 
Rocky
 Prairie
 NAP
 WA
 State
 -­‐
 Dept.
 of
 Natural
 Resources
 
 
 

 
Glacial
 Heritage
 Thurston
 County
 -­‐
 Dept.
 of
 Parks
 and
 Recreation
 
 
Scatter
 Creek
 Wildlife
 Area
 WA
 State
 –
 Dept.
 of
 Fish
 and
 Wildlife
 
 
13th
 Division
 Prairie
 RNA
 US
 Army
 -­‐
 Fort
 Lewis
 
 

 

 

 
Weir
 Prairie
 RNA
 US
 Army
 -­‐
 Fort
 Lewis
 
 
 

 

 

 

 
Bower
 Woods
 Ponderosa
 Pine
 Forest
 RNA
 US
 Army
 -­‐
 Fort
 Lewis
 
 
(Dunn,
 1998)
 


 

 

 

 

 

 

 


 


 


 

 

 

 

 

 

 

Acres
 
445
 
 
47
 
 
1,020
 
 
1,200
 
 
234
 
 
1,096
 
 
1,739
 
 

Preservation
 status
 means
 that
 these
 areas
 are
 protected
 from
 future
 development,
 not
 
necessarily
 fully
 restored
 prairie
 or
 oak
 woodland.
 
 In
 fact
 the
 idea
 of
 what
 constitutes
 a
 
restored
 prairie
 or
 oak
 woodland
 differs
 amongst
 organizations
 and
 over
 time.
 
 The
 
management
 of
 these
 areas
 varies
 not
 only
 from
 agency
 to
 agency
 but
 from
 site
 to
 site
 as
 well.
 
 
 
I
 interviewed
 14
 practitioners
 with
 a
 combined
 187
 years
 of
 experience
 restoring
 and
 
conserving
 grassland
 habitats.
 
 Years
 of
 experience
 range
 from
 2
 to
 30
 with
 the
 average
 being
 
13.5.
 
 All
 participants
 are
 part
 of
 the
 South
 Puget
 Sound
 Prairie
 Landscape
 Working
 Group
 list
 
serve
 and
 were
 referred
 through
 the
 South
 Puget
 Sound
 Nature
 Conservancy.
 Participants
 were
 


 

 

Page
 
41
 


 

 

land
 managers,
 restoration
 ecologist,
 wildlife
 conservationist
 and
 researchers.
 Collectively,
 
participants
 represented
 10
 different
 nonprofit,
 state,
 federal
 and
 academic
 organizations.
 
 
Interviews
 were
 conducted
 either
 in
 an
 office,
 meeting
 room
 or
 over
 the
 phone.
 
 Meetings
 
ranged
 from
 thirty
 minutes
 to
 an
 hour
 with
 the
 average
 conversation
 lasting
 45
 minutes.
 
 All
 
individuals
 were
 asked
 the
 same
 13
 questions
 when
 applicable
 (Fig.
 D)
 but
 the
 sequence
 of
 the
 
questions
 varied
 depending
 upon
 the
 responses
 that
 were
 given.
 
 The
 identity
 of
 participants
 
will
 be
 kept
 anonymous
 due
 to
 the
 sensitive
 and
 sometimes
 contentious
 nature
 of
 adaption
 to
 
climate
 change.
 
 Each
 participant
 is
 associated
 with
 a
 corresponding
 letter
 value.
 
 Statistical
 
analysis
 of
 interview
 results
 discussed
 is
 presented
 in
 a
 table
 (Fig.
 E.):
 
 
 
 
 
 
 
 
 
 
 
Figure
 E.)
 Interview
 results
 from
 questions
 that
 are
 discussed
 throughout
 the
 paper.
 
 Answers
 to
 questions
 were
 
coded
 based
 upon
 the
 response
 provided
 by
 the
 participants.
 
 Percentages
 are
 rounded
 to
 the
 nearest
 whole
 
number.
 
 
 
 


 
What
 are
 your
 current
 
restoration
 goals?
 
manage
 invasive
 species
 
increase
 diversity
 
restore
 ecological
 process
 
research
 or
 develop
 tools
 
restore
 pre-­‐settlement
 
landscape
 
increase
 #
 of
 rare
 species
 

 
Is
 climate
 change
 a
 challenge
 or
 
an
 opportunity
 for
 prairie
 
restoration?
 
 
 
challenge
 
 
opportunity
 
both
 

 
What
 effect
 is
 climate
 change
 
having
 on
 the
 prairie
 eco-­‐
system?
 
significant
 impact
 
minimal
 impacts
 


 

 

N=14
 
79%
 
79%
 
29%
 
21%
 
29%
 
36%
 

 


 

N=14
 
100%
 
79%
 
79%
 

 
N=14
 
50%
 
30%
 

Page
 
42
 

not
 yet
 occurring
 

 
What
 methods
 do
 you
 utilize
 to
 
achieve
 your
 goals?
 
prescribed
 burning
 
mechanical
 control
 
planting,
 seeding,
 or
 
reintroduction
 
chemical
 control
 

 
What
 considerations,
 if
 any,
 do
 
you
 give
 to
 sourcing
 restoration
 
materials?
 
 
 
site
 specific
 
regional
 mix
 

 
Do
 you
 think
 assisted
 migration
 
of
 prairie
 species
 will
 be
 a
 
necessary
 measure
 as
 the
 
climate
 changes?
 
 
 
necessary
 
unnecessary
 


 

 

20%
 

 
N=12
 
50%
 
66%
 
84%
 
66%
 

 

N=11
 
45%
 
55%
 

 

N=14
 
57%
 
43%
 

aggressive
 
avoidance
 
constrained
 

 
Is
 the
 term
 "native"
 still
 
appropriate
 in
 this
 time
 of
 
climate
 change
 
still
 appropriate
 
definition
 will
 expand
 
Mentioned
 invasive
 species
 

 

14%
 
14%
 
72%
 

 

What
 is
 your
 perception
 of
 
what
 has
 been
 lost?
 
biodiversity
 
ecological
 processes
 
geographic
 extent/connectivity
 
mindset
 
resilience
 

 
What
 can
 realistically
 be
 
restored?
 
maintain
 existing
 populations
 
expand
 

N=14
 
100%
 
85%
 
50%
 

 

N=14
 
50%
 
21%
 
64%
 
21%
 
7%
 

 
N=14
 
57%
 
43%
 

The
 restoration
 goals
 of
 most
 participants
 could
 be
 classified
 into
 two
 themes
 
controlling
 invasive
 species
 and
 increasing
 diversity.
 
 While
 some
 participants
 were
 chiefly
 
involved
 in
 researching
 best
 practices
 and
 developing
 tools
 for
 restoration,
 the
 majority
 of
 
participants
 identified
 these
 two
 interconnected
 goals.
 
 Invasive
 species
 are
 the
 single
 greatest
 
threat
 to
 biodiversity
 on
 the
 prairie
 landscape
 as
 many
 of
 the
 invasive
 species
 out-­‐compete
 
native
 species
 even
 on
 undisturbed
 sites
 (Source
 E,
 2009).
 
 
 Native
 prairie
 species
 are
 not
 
particularly
 well
 adapted
 to
 the
 cooler
 wetter
 climate
 present
 in
 western
 Washington
 since
 
4,500
 yrs.
 B.P.
 and
 invasive
 species
 by
 nature
 are
 extremely
 competitive
 (Source
 F,
 2009).
 
Whether
 practitioners
 were
 restoring
 sites
 to
 a
 pre-­‐settlement
 landscape
 composition
 or
 to
 
augment
 the
 population
 of
 a
 single
 rare
 species,
 controlling
 invasive
 species
 was
 viewed
 as
 
necessary
 to
 preserve
 and
 restore
 diversity.
 
 
 
While
 the
 motivation
 for
 increasing
 diversity
 varies
 amongst
 agencies
 and
 individuals,
 
studies
 have
 shown
 that
 increasing
 diversity
 can
 increase
 the
 resilience
 of
 an
 ecosystem
 to
 
disturbances
 that
 will
 likely
 be
 more
 common
 under
 climate
 change.
 
 Increasing
 taxonomical
 
diversity
 or
 the
 functional
 redundancy
 (the
 replication
 of
 components
 with
 similar
 functions)
 


 

 

Page
 
43
 


 

 

increases
 the
 likelihood
 that
 individuals
 who
 provided
 a
 specific
 function
 will
 survive
 a
 
disturbance
 (Dunwiddie
 et
 al.,
 2009).
 
 Increasing
 the
 number
 of
 individuals
 within
 a
 population
 
or
 component
 redundancy
 increases
 the
 likelihood
 that
 some
 individuals
 will
 be
 able
 to
 adapt
 
to
 or
 survive
 a
 disturbance
 (Dunwiddie
 et
 al,
 2009).
 
 Research
 has
 also
 shown
 that
 intact
 and
 
species-­‐rich
 communities
 not
 only
 have
 increased
 production,
 but
 also
 are
 more
 resistant
 to
 
invasions
 (Tilman,
 1999).
 
 While
 mandates
 and
 targets
 differ
 amongst
 practitioners,
 controlling
 
invasive
 species
 and
 increasing
 diversity,
 may
 also
 enable
 prairie
 species
 to
 persist
 or
 adapt
 to
 a
 
changing
 climate.
 
 
 
 
 
While
 adapting
 restoration
 practices
 to
 a
 changing
 climate
 was
 not
 a
 specific
 goal
 of
 any
 
of
 the
 participants
 interviewed,
 all
 individuals
 had
 given
 consideration
 to
 how
 climate
 change
 
might
 affect
 their
 work.
 
 When
 asked
 if
 climate
 change
 was
 a
 challenge
 or
 an
 opportunity
 for
 
restoration
 on
 the
 south
 Puget
 Sound
 prairie
 landscape
 the
 majority
 of
 participants
 (79%)
 said
 
both.
 
 21%
 saw
 climate
 change
 as
 only
 a
 challenge
 to
 restoration
 and
 no
 one
 exclusively
 viewed
 
climate
 change
 as
 an
 opportunity.
 
 The
 most
 significant
 reason
 why
 practitioners
 saw
 climate
 
change
 as
 a
 challenge
 was
 the
 uncertainty
 associated
 with
 modeling
 human
 and
 plant
 reactions
 
(62%).
 
 
 For
 land
 managers
 and
 conservationist,
 “the
 challenges
 are
 in
 what
 we
 do
 right
 now
 
because
 the
 questions
 are
 so
 huge
 and
 we
 do
 not
 have
 many
 answers
 for
 them”
 (Source
 L,
 
2009).
 
 
 While
 models
 provide
 some
 information
 about
 how
 ecosystems
 will
 respond
 under
 a
 
given
 scenario,
 they
 are
 sensitive
 to
 the
 complexity
 of
 interaction
 amongst
 species
 (Hulme,
 
2005).
 
 The
 effect
 of
 climate
 change
 is
 likely
 to
 be
 a
 very
 complex
 response
 with
 some
 species
 
benefiting
 and
 some
 species
 declining,
 the
 indirect
 effects
 in
 regards
 to
 competitive
 
relationships,
 predation
 and
 habitat
 availability
 will
 be
 really
 hard
 to
 predict
 (Source
 N,
 2009).
 
 


 

 

Page
 
44
 


 

 

Climate
 change
 is
 a
 challenge
 on
 top
 of
 all
 the
 other
 challenges
 that
 practitioners
 have
 to
 
overcome
 (Source
 C,
 2009).
 In
 particular,
 roughly
 75%
 of
 participants
 cited
 concern
 about
 the
 
relationship
 between
 biodiversity
 and
 invasive
 species,
 “we
 have
 no
 idea
 whether
 climate
 
change
 will
 make
 exotic
 or
 natives
 less
 competitive
 or
 more
 competitive”
 (Source
 H,
 2009).
 
 
Research
 is
 needed
 to
 better
 understand
 what
 effects
 climate
 change
 will
 have
 on
 vegetation
 
communities.
 
 
 
 
 
 
While
 all
 participants
 viewed
 climate
 change
 as
 a
 challenge
 to
 restoration
 roughly
 ¾
 also
 
saw
 an
 opportunity
 either
 from
 an
 organizational,
 personal,
 ecological
 or
 social
 perspective.
 
 
For
 some
 organizations
 climate
 change
 is
 an
 opportunity
 to
 re-­‐evaluate
 objectives
 such
 as
 using
 
historic
 conditions
 as
 a
 restoration
 target
 (Source
 N,
 2009).
 
 On
 a
 personal
 level
 there
 is
 an
 
opportunity
 for
 research,
 “for
 me
 I
 think
 it
 is
 a
 bit
 of
 an
 opportunity
 because
 it
 reinforces
 my
 
emphasis”
 (Source
 C,
 2009).
 
 The
 rate
 of
 climate
 change
 is
 unprecedented
 and
 there
 will
 be
 
unique
 opportunities
 to
 research
 migration
 and
 adaptive
 divergence.
 
 Ecologically,
 longer
 drier
 
summers
 should
 theoretically
 improve
 the
 current
 prairie
 habitat,
 as
 climate
 conditions
 become
 
more
 suitable
 for
 grasslands
 (Source
 J,
 2009).
 Yet
 while
 climate
 change
 might
 improve
 
conditions
 for
 some
 prairie
 species
 it
 will
 also
 improve
 conditions
 for
 invasive
 species,
 which
 
are
 well
 adapted
 to
 surviving
 in
 new
 climates
 (Source
 M,
 2009).
 
 
 Active
 management
 will
 
continue
 to
 be
 necessary
 to
 maintain
 the
 prairie
 landscape,
 because
 it
 is
 a
 cultural
 landscape;
 
 
We
 tend
 to
 look
 at
 climate
 change
 as
 a
 bad
 thing
 but
 there
 are
 going
 to
 be
 winners
 and
 
losers.
 
 When
 some
 species
 disappear
 others
 show
 up,
 whether
 or
 not
 they
 are
 going
 to
 
be
 species
 we
 view
 as
 beneficial
 or
 whether
 we
 are
 going
 to
 view
 them
 as
 deleterious
 
those
 are
 value
 judgments
 (Source
 K,
 2009).
 
 
 

 
From
 a
 social
 perspective,
 opportunity
 lies
 within
 enhancing
 the
 value
 of
 prairies,
 “as
 the
 
climate
 becomes
 warmer
 and
 drier
 people
 will
 surely
 learn
 that
 having
 grasslands
 is
 beneficial”
 

 

 

Page
 
45
 


 

 

(Source
 G,
 2009).
 
 In
 general,
 grasslands
 are
 well
 adapted
 to
 disturbances
 and
 are
 effective
 at
 
storing
 carbon,
 the
 south
 Puget
 Sound
 prairies
 are
 no
 exception
 (Source
 G,
 2009).
 
 Climate
 
change
 might
 hold
 some
 promise
 for
 the
 south
 Puget
 Sound
 prairie
 landscape
 if
 cultural
 value
 
expands
 and
 invasive
 species
 are
 controlled.
 
 
 

 

While
 all
 participants
 viewed
 climate
 change
 as
 a
 challenge,
 there
 was
 a
 lack
 of
 

consensus
 about
 the
 effects
 climate
 change
 is
 having
 on
 the
 south
 Puget
 Sound
 prairie
 
landscape.
 
 Roughly
 50%
 of
 participants
 expressed
 that
 the
 effects
 of
 climate
 change
 on
 the
 
prairies
 needs
 to
 be
 addressed
 or
 are
 already
 been
 addressed,
 “we
 should
 start
 laying
 out
 the
 
possibilities
 and
 exploring
 options
 to
 figure
 out
 how
 to
 maintain
 communities.
 
 It
 seems
 like
 it
 is
 
past
 time”
 (Source
 I,
 2009).
 
 Roughly
 30%
 of
 participants
 thought
 the
 impacts
 of
 climate
 change
 
were
 or
 would
 be
 minimal,
 and
 20%
 thought
 that
 climate
 change
 was
 not
 effecting
 the
 prairie
 
landscape
 yet,
 “hard
 to
 make
 changes
 for
 something
 that
 might
 happen
 but
 hasn't
 happened
 
yet”
 (Source
 B,
 2009).
 
 An
 overwhelming
 majority
 of
 participants
 expressed
 a
 need
 for
 more
 
research
 and
 funding
 to
 understand
 exactly
 what
 effects
 climate
 change
 is
 having
 before
 
adaption
 can
 take
 place.
 
 “As
 we
 think
 about
 anything
 beyond
 our
 basics,
 (controlling
 invasive
 
species)
 and
 try
 to
 manipulate
 the
 ecosystem
 we
 find
 we
 do
 not
 know
 enough”
 (Source
 C,
 
2009).
 
 In
 the
 absence
 of
 more
 research
 practitioners
 are
 continuing
 to
 develop
 more
 
sophisticated
 and
 effective
 ways
 to
 control
 invasive
 species
 and
 increase
 diversity,
 which
 will
 
enable
 the
 ecosystem
 to
 be
 more
 resilient
 to
 increased
 disturbances
 projected
 in
 the
 future.
 
 
 
 
 

 
 
 

Restoration
 Techniques
 


 

 

Page
 
46
 


 

 

Ecological
 restoration
 of
 land
 that
 was
 originally
 prairie
 or
 enhancing
 degraded
 prairies
 
requires
 reducing
 the
 abundance
 of
 non-­‐native
 species
 and
 woody
 vegetation
 and
 increasing
 
the
 abundance
 of
 native
 plants
 (Fitzpatrick
 2004).
 
 There
 are
 three
 basic
 steps
 to
 restoration;
 
site
 preparation,
 seeding/planting
 and
 post
 seeding
 management.
 
 There
 are
 many
 different
 
techniques
 used
 for
 prairie
 restoration
 what
 has
 worked
 best
 on
 the
 south
 Puget
 Sound
 prairie
 
landscape
 is
 a
 combination
 of
 mechanical
 control,
 prescribed
 fire,
 chemical
 treatment
 and
 
replanting.
 
The
 first
 step
 to
 prairie
 restoration
 in
 the
 south
 Puget
 Sound
 has
 been
 to
 reduce
 the
 
number
 of
 non-­‐native
 species
 and
 woody
 vegetation.
 
 Initial
 treatments
 of
 sites
 often
 involve
 
the
 removal
 of
 scotch
 broom
 (C.
 scoparius)
 through
 mechanical
 control,
 chemical
 control
 or
 
prescribed
 burning.
 
 While
 there
 are
 many
 other
 invasive
 species
 on
 the
 prairie
 landscape
 
scotch
 broom
 (C.
 scoparius)
 is
 one
 of
 the
 more
 deleterious
 and
 there
 is
 a
 large
 body
 of
 research
 
on
 controlling
 scotch
 broom
 populations.
 Mechanical
 control
 includes
 hand
 pulling
 (weed
 
wrenches
 and
 loppers),
 motorized
 brush
 cutters
 and
 mowing
 (Dunn,
 1998).
 
 Timing
 and
 
selection
 is
 critical
 for
 the
 success
 of
 mechanical
 control
 techniques,
 as
 cutting
 is
 most
 effective
 
for
 older
 individuals
 during
 the
 late
 summer
 when
 they
 are
 stressed
 (Dunn,
 1998).
 
 Mechanical
 
controls
 can
 also
 require
 an
 extensive
 amount
 of
 labor
 to
 achieve
 sufficient
 results.
 
 Chemical
 
controls
 for
 scotch
 broom
 (C.
 scoparius)
 have
 included
 several
 different
 herbicides
 applied
 
directly
 to
 the
 plant
 through
 spot
 spraying,
 broadcast
 spraying
 and
 hand
 application
 (Dunn,
 
2002).
 
 Chemical
 controls
 can
 be
 costly
 and
 target
 non-­‐selected
 species
 but
 are
 also
 highly
 
effective
 at
 reducing
 scotch
 broom
 (C.
 scoparius)
 cover
 (Dunn,
 1998).
 
 Chemical
 controls,
 
specifically
 Fusilade
 have
 also
 been
 an
 effective
 post
 emergence
 control
 for
 grass
 weeds
 such
 as
 


 

 

Page
 
47
 


 

 

tall
 oat
 grass
 (Source
 D,
 2009).
 
 Finally,
 prescribed
 fire
 in
 a
 restoration
 setting
 has
 been
 utilized
 
on
 bunchgrass
 prairies
 in
 western
 Washington
 since
 the
 early
 80’s
 (Source
 J,
 2009).
 
 Fire
 has
 
been
 the
 prominent
 tool
 used
 to
 manage
 scotch
 broom
 (C.
 scoparius)
 at
 several
 south
 Puget
 
Sound
 prairies
 (Dunn,
 1998).
 
 Fire
 not
 only
 causes
 the
 mortality
 of
 Scotch
 broom
 (C.
 scoparius)
 
but
 it
 also
 volatilizes
 nitrogen
 and
 creates
 bare
 ground
 for
 germination.
 
 Typically
 fire
 will
 also
 
flush
 seeds
 from
 the
 soil
 by
 stimulating
 the
 remaining
 Scotch
 broom
 to
 germinate
 (Dunn,
 2002).
 
 
While
 fire
 is
 a
 natural
 part
 of
 the
 prairie
 environment,
 there
 are
 limitations
 to
 using
 fire
 in
 a
 
restoration
 setting.
 
 Prescribed
 fires
 can
 burn
 too
 hot,
 may
 only
 be
 set
 under
 certain
 climate
 
conditions
 and
 reduce
 habitat
 availability
 in
 the
 short
 term
 (Source
 B,
 2009).
 
 
 
 All
 participants
 
agreed
 that
 the
 best
 way
 to
 manage
 invasive
 species
 is
 by
 utilizing
 a
 combination
 of
 these
 
techniques
 based
 upon
 a
 variety
 of
 factors
 including
 labor,
 funding,
 overarching
 goals,
 site
 
history
 and
 what
 is
 permitted
 by
 the
 land
 manager
 or
 agency.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After
 a
 restoration
 site
 has
 been
 prepared
 by
 the
 removal
 of
 invasive
 species
 and
 woody
 
vegetation,
 the
 site
 is
 then
 planted
 or
 seeded
 with
 desired
 species.
 
 Passive
 restoration
 or
 
allowing
 natural
 colonization
 is
 not
 possible
 as
 the
 prairies
 of
 the
 south
 Puget
 Sound
 owe
 their
 
existence
 to
 human
 management,
 without
 which
 they
 would
 disappear
 (Dunn,
 1998).
 
 There
 
are
 several
 methods
 for
 seeding
 and
 planting,
 including
 drilling,
 broadcasting
 and
 plugging.
 
 
Drilling
 requires
 fewer
 seeds
 and
 protects
 them
 from
 wind,
 water
 and
 predation
 (Fritzpatrick,
 
2004).
 
 Although
 it
 may
 lead
 to
 lower
 survivorship
 through
 competition
 and
 can
 look
 unnatural
 
due
 to
 the
 “row
 effect”.
 
 Broadcast
 seeding
 requires
 more
 seed
 and
 may
 have
 a
 lower
 
emergence
 rate
 but
 a
 higher
 survivorship
 rate
 compared
 to
 drilling
 (Fritzpatrick,
 2004).
 
 A
 third
 
method
 of
 seeding
 that
 is
 currently
 being
 researched
 on
 the
 south
 Puget
 Sound
 is
 hydro
 


 

 

Page
 
48
 


 

 

seeding
 where
 seed
 is
 sprayed
 with
 a
 mulch
 mixture
 (Source
 L,
 2009).
 Seeding
 is
 not
 effective
 
for
 all
 species,
 for
 example
 germination
 rates
 in
 the
 wild
 for
 the
 endangered
 Golden
 Paintbrush
 
(C.
 levisecta)
 can
 be
 less
 than
 1%
 (Source
 M,
 2009).
 
 Raising
 plugs
 from
 seed
 is
 a
 very
 effective
 
technique
 that
 can
 efficiently
 use
 limited
 or
 hard
 to
 seed
 species.
 
 Plugging
 can
 lead
 to
 higher
 
establishment
 rates
 than
 seeding
 but
 is
 also
 more
 expensive
 and
 labor
 intensive
 (Fritzpatrick,
 
2004).
 
 Techniques
 for
 seeding
 and
 planting
 are
 continually
 being
 adapted
 to
 what
 is
 working
 
best;
 
 
They
 are
 constantly
 changing
 depending
 on
 people’s
 opinions,
 site
 location
 and
 annual
 
variability
 in
 climate.
 
 
 Our
 flexibility
 to
 respond
 has
 improved.
 
 We
 understand
 more
 
than
 10-­‐20
 years
 and
 I
 think
 that
 understand
 has
 brought
 a
 broader
 approach
 instead
 of
 
just
 working
 on
 one
 prairie
 we
 are
 working
 across
 a
 broad
 region.
 (Source
 L,
 2009)
 

 
 
The
 utilization
 of
 restoration
 techniques
 on
 the
 south
 Puget
 Sound
 prairies
 is
 very
 much
 an
 
adaptive
 management
 scenario.
 
 As
 techniques
 for
 removing
 invasive
 species
 and
 planting
 seed
 
become
 more
 efficient
 and
 productive,
 practitioners
 have
 been
 able
 to
 restore
 and
 maintain
 a
 
greater
 amount
 of
 prairie.
 
 
 As
 the
 scale
 of
 restoration
 increases
 the
 practice
 of
 sourcing
 
restoration
 materials
 has
 become
 more
 significant.
 
 
 
 
 
Currently
 the
 south
 Puget
 Sound
 prairie
 landscape
 is
 fragmented
 and
 disconnected.
 
 
97%
 of
 prairie
 habitat
 has
 been
 degraded
 of
 the
 3%
 that
 remains
 only
 1%
 is
 actually
 protected
 
(Crawford
 and
 Hall,
 1997).
 The
 continuous
 patchwork
 of
 prairie
 which
 once
 existed
 is
 gone
 and
 
as
 each
 sub
 population
 comes
 under
 a
 threat
 or
 issue
 it
 becomes
 extirpated
 (Source
 B,
 2009).
 
 
Fragmentation
 can
 lead
 to
 decreased
 vigor
 and
 reproductive
 output
 of
 many
 of
 the
 plants
 and
 
animals
 due
 to
 inbreeding
 depression
 and
 other
 genetic
 problems
 associated
 with
 small
 
isolated
 populations
 (Fitzpatrick,
 2004).
 
 In
 order
 to
 increase
 the
 resilience
 of
 the
 prairies
 to
 
climate
 change,
 preservation
 and
 restoration
 of
 areas
 between
 existing
 populations
 is
 essential;
 

 

 

Page
 
49
 


 

 

The
 trick
 is
 going
 to
 be
 to
 patch
 what
 we
 have
 together
 so
 there
 is
 connectivity
 
throughout
 the
 region.
 
 We
 need
 to
 maintain
 as
 much
 habitat
 as
 possible
 to
 make
 sure
 
there
 is
 an
 area
 for
 species
 to
 move
 to.
 
 That
 requires
 a
 lot
 of
 the
 initial
 treatments
 we
 
do
 on
 low
 quality
 prairies.
 
 (Source
 L,
 2009)
 
 
 

 
Identifying,
 purchasing,
 restoring
 and
 actively
 managing
 more
 land
 will
 require
 additional
 
resources
 and
 funding.
 
 
 
 
 
 
 
One
 method
 that
 has
 been
 applied
 to
 wetlands
 and
 other
 habitats
 is
 mitigation
 banking.
 
 
Mitigation
 or
 conservation
 banking
 is
 offsetting
 adverse
 ecological
 impacts
 of
 development
 
through
 the
 creation,
 restoration,
 enhancement
 or
 preservation
 of
 similar
 habitat.
 
 Some
 
agencies
 want
 to
 begin
 conservation
 banking
 and
 make
 developers
 pay
 a
 fee
 for
 building
 on
 
prairie
 habitat,
 so
 that
 lands
 elsewhere
 can
 be
 purchased
 to
 connect
 existing
 prairie
 preserves
 
(Source
 M,
 2009).
 
 Beginning
 in
 the
 early
 1990's,
 mitigation
 banking
 has
 been
 successfully
 used
 
to
 restore
 over
 3,000
 acres
 of
 wet
 prairie
 in
 Eugene
 Oregon
 (City
 of
 Eugene,
 2010).
 
 The
 West
 
Eugene
 Wetlands
 Mitigation
 bank
 is
 operated
 by
 the
 City
 of
 Eugene
 Public
 Works
 Department
 
which
 implements
 wet
 prairie
 restoration
 projects
 funded
 by
 development
 impact
 fees
 (City
 of
 
Eugene,
 2010).
 Hopefully
 this
 strategy
 will
 also
 be
 successful
 on
 the
 drier
 south
 Puget
 Sound
 
prairie
 landscape.
 
 However,
 even
 if
 connectivity
 can
 be
 restored
 the
 rate
 of
 climate
 change
 and
 
current
 state
 of
 the
 prairies
 will
 necessitate
 additional
 methods
 to
 maintain
 and
 increase
 
diversity.
 
 
 
 
 
 
 
 
 
 


 
Migration;
 Connecting
 the
 Islands
 in
 a
 Sea
 of
 Change
 
Paleontological
 research
 clearly
 demonstrates
 that
 during
 past
 climate
 changes
 the
 
geographic
 distribution
 of
 vegetation
 shifted
 (Davis
 et
 al.,
 2001).
 
 While
 vegetation
 does
 not
 
literally
 move,
 new
 regions
 are
 occupied
 through
 seed
 dispersal
 and
 establishment.
 
 


 

 

Page
 
50
 


 

 

Anthropogenic
 climate
 change
 is
 expected
 to
 be
 so
 rapid
 that
 only
 a
 percentage
 of
 plants
 may
 
actually
 migrate
 fast
 enough
 to
 keep
 up
 (Malcolm
 and
 Pitelka,
 2000).
 Such
 threats
 are
 likely
 to
 
be
 most
 keenly
 felt
 by
 species
 with
 limited
 dispersal
 ability
 (Hulme,
 2005).
 
 Climate
 change
 is
 
causing
 a
 sorting
 of
 vegetation
 into
 bands
 along
 migration
 fronts,
 led
 by
 the
 fastest
 (most
 
invasive)
 dispersers
 and
 trailed
 by
 the
 slowest
 (least
 invasive),
 which
 are
 perhaps
 at
 the
 
greatest
 risk
 of
 local
 extinction
 (Neilson
 et
 al.,
 2005).
 
 Thus
 rapidly
 migrating
 species
 will
 
increasingly
 “invade”
 new
 habitat
 as
 more
 sedentary
 late
 succession
 or
 endemic
 species
 will
 
eventually
 die
 out
 (Neilson
 et
 al.,
 2005).
 Plant
 communities
 could
 become
 progressively
 
composed
 of
 species
 that
 exhibit
 high
 phenotypic
 placidity,
 fecundity
 and
 the
 ability
 to
 disperse
 
over
 long
 distances
 (Malcolm
 and
 Pitelka,
 2000).
 
 Two
 primary
 options
 exist:
 improve
 the
 
connectivity
 of
 habitats
 to
 facilitate
 natural
 dispersal,
 or
 relocate
 species
 to
 appropriate
 
habitats
 (Hulme,
 2005).
 
Researchers
 are
 still
 seeking
 to
 understand
 the
 interconnected
 relationship
 between
 
adaptation
 and
 migration.
 
 Adaptation
 to
 climate
 change
 can
 occur
 through
 the
 selection
 of
 
more
 fit
 or
 vigorous
 genotypes
 (Dunwiddie
 et
 al.,
 2009).
 
 Adaptation
 is
 dependent
 upon
 a
 
balance
 between
 selection
 and
 gene
 flow.
 
 Evolutionary
 understanding
 of
 past
 range
 shifts
 
indicate
 that
 climate
 change
 will
 select
 against
 phenotypes
 that
 are
 poorly
 adapted
 to
 local
 
environments
 and
 gene
 migration
 from
 neighboring
 populations
 will
 play
 a
 significant
 role
 in
 
the
 recombination
 of
 genes
 influencing
 physiological
 traits
 (Davis
 et
 al.,
 2001).
 
 
 Migration
 of
 a
 
plant
 species
 can
 occur
 as
 a
 slow
 local
 process
 whereby
 a
 species
 migrates
 as
 a
 front
 in
 short
 
steps
 or
 as
 a
 rapid
 process
 through
 long-­‐distance
 jumps
 (Neilson
 et
 al.,
 2005).
 As
 the
 climate
 
changes
 the
 leading
 edge
 of
 the
 migrating
 front
 may
 be
 enhanced
 by
 gene
 transfer
 from
 the
 


 

 

Page
 
51
 


 

 

center
 but
 populations
 at
 the
 trailing
 edge
 receive
 no
 gene
 transfer
 from
 better
 adapted
 
populations
 because
 those
 beyond
 that
 edge
 are
 either
 extinct
 or
 prevented
 from
 flowering
 
and
 setting
 seed
 (Davis
 et
 al.,
 2001).
 Spread
 from
 locally
 isolated
 populations
 can
 occur
 fairly
 
rapidly,
 but
 will
 be
 insufficient
 to
 keep
 up
 with
 the
 predicted
 rates
 of
 climate
 change
 (Neilson
 et
 
al.,
 2005).
 
 Long
 distance
 dispersal
 then
 is
 the
 only
 way,
 which
 plant
 adaptation
 and
 migration
 
will
 keep
 pace
 with
 accelerated
 climate
 change,
 which
 has
 caused
 some
 practitioners
 to
 
advocate
 for
 methods
 which
 facilitate
 the
 movement
 of
 species.
 
 
 
As
 replanting
 and
 re-­‐seeding
 efforts
 on
 the
 south
 Puget
 Sound
 prairie
 landscape
 have
 
intensified
 so
 has
 the
 debate
 about
 where
 to
 source
 materials,
 “a
 year
 ago
 we
 started
 a
 seed
 
increase
 program
 trying
 to
 bulk
 up
 seed.
 
 We
 had
 quite
 a
 bit
 of
 discussion
 about
 seed
 source”
 
(Source
 F,
 2009).
 
 In
 general,
 practitioners
 want
 to
 increase
 diversity
 and
 avoid
 selection
 of
 
genotypes
 that
 may
 decrease
 the
 mean
 fitness
 of
 the
 genetic
 pool,
 such
 as
 seed
 collection
 
practices,
 processing,
 nursery
 propagation
 and
 out-­‐planting
 (Dunwiddie
 and
 Delvin,
 2006).
 
 For
 
example
 within
 the
 past
 decade
 a
 series
 of
 mistakes
 led
 to
 the
 planting
 of
 red
 fescue
 (Festuca
 
Rubra)
 rather
 than
 the
 intended
 Rohmers
 Fescue
 (Festuca
 roemeri)
 on
 the
 south
 Puget
 Sound
 
Prairie
 Landscape
 (Dunwiddie
 and
 Delvin,
 2006).
 
 When
 asked,
 what
 considerations
 do
 you
 give
 
to
 sourcing
 restoration
 materials
 (seeds,
 individuals,
 ect.
 ),
 response
 were
 generally
 focused
 
upon
 the
 distance
 materials
 traveled
 to
 the
 restoration
 site.
 
 The
 concern
 over
 distance
 lies
 in
 
the
 risk
 of
 inbreeding
 or
 out-­‐breeding
 depression,
 and
 may
 reflect
 recent
 work
 to
 develop
 a
 
regional
 seed
 mix,
 “We
 had
 an
 inter-­‐agency
 group
 talk
 about
 the
 area
 for
 collection
 of
 seed
 
annuals,
 perennials
 and
 rare
 plants”
 (Source
 D,
 2009).
 
 Studies
 have
 demonstrated
 that
 both
 
inbreeding
 amongst
 close
 relatives
 and
 out-­‐breeding
 with
 members
 of
 distant
 populations
 can
 


 

 

Page
 
52
 


 

 

result
 in
 decreased
 fitness
 (Lynch,
 1990).
 
 However
 inbreeding
 almost
 always
 ends
 in
 decreased
 
mean
 fitness
 and
 out-­‐breeding
 often
 has
 positive
 effects
 (Lynch,
 1990).
 
 
 
 
 
 
 
 
 
11
 participants
 were
 involved
 in
 sourcing
 restoration
 materials
 through
 the
 course
 of
 
their
 work.
 
 45%
 preferred
 to
 source
 materials
 on-­‐site
 or
 as
 close
 to
 the
 site
 as
 possible,
 with
 
the
 belief
 that
 those
 materials
 are
 well
 adapted
 to
 the
 restoration
 site.
 
 55%
 mentioned
 
sourcing
 materials
 regionally
 with
 the
 criteria
 that
 annuals
 and
 rare
 plants
 would
 be
 as
 site
 
specific
 as
 possible
 and
 the
 remaining
 plants
 would
 be
 collected
 from
 a
 20-­‐30
 mile
 area
 (Source
 
D,
 2009).
 
 In
 a
 changing
 climate
 sourcing
 seeds
 regionally
 will
 help
 species
 adapt
 and
 persist
 by
 
increasing
 gene
 flow
 (Davis
 et
 al.,
 2005).
 
 Several
 agencies
 are
 currently
 utilizing
 a
 regional
 seed
 
mixture
 for
 fescue
 and
 developing
 a
 mix
 for
 forbs
 and
 annuals
 (Source
 F,
 2009).
 
 Theoretically
 a
 
regional
 seed
 mix
 may
 contain
 more
 genetic
 diversity
 increasing
 the
 component
 redundancy
 of
 
the
 planting
 or
 seeding,
 “the
 general
 consensus
 is
 that
 the
 more
 mixing
 genetically
 the
 better
 
chance
 the
 plants
 will
 have
 to
 survive”(Source
 K,
 2009).
 
 On
 the
 fragmented
 south
 Puget
 Sound
 
prairie
 landscape
 preserves
 are
 essentially
 islands
 amongst
 asphalt
 and
 the
 rate
 of
 gene
 
transfer
 and
 migration
 has
 been
 significantly
 altered.
 
 The
 creation
 of
 regional
 seed
 mixes
 will
 
facilitate
 gene
 flow
 and
 hopefully
 increase
 genetic
 diversity,
 but
 sometimes
 greater
 steps
 are
 
needed
 to
 conserve
 and
 restore
 diversity.
 
 
 
 
 
 
 
 
 
 
 
 
 
In
 order
 for
 conservationists
 to
 meet
 certain
 targets
 sometimes
 the
 removing
 of
 invasive
 
species,
 habitat
 protections
 and
 enhancements
 are
 not
 effective
 enough.
 
 Two
 methods
 
currently
 utilized
 on
 the
 south
 Puget
 Sound
 prairie
 landscape
 for
 maintaining
 and
 augmenting
 
rare/endangered
 species
 populations
 are
 translocation
 and
 reintroduction.
 
 Translocation
 
refers
 to
 the
 capture,
 transport
 and
 release
 of
 an
 individual
 or
 population
 typically
 from
 a
 


 

 

Page
 
53
 


 

 

disturbed
 site
 to
 a
 preserved
 area
 within
 the
 historical
 range.
 
 There
 have
 been
 several
 
translocation
 projects
 on
 the
 south
 Puget
 Sound
 prairie
 landscape,
 including
 the
 Mazama
 
pocket
 gopher
 (Thomomys
 mazama).
 
 The
 Mazama
 pocket
 gopher
 (T.
 mazama)
 with
 27
 known
 
populations
 is
 a
 State
 species
 of
 concern
 and
 a
 candidate
 for
 protection
 under
 the
 Federal
 
Endangered
 Species
 Act.
 
 Over
 180
 individuals
 have
 been
 relocated
 to
 Wolf
 Haven,
 a
 private
 
prairie
 preserve,
 when
 their
 populations
 were
 threatened
 by
 development,
 succession
 or
 
agriculture
 (Wolf
 Haven,
 2009).
 
 While
 the
 Mazama
 pocket
 gophers
 (T.
 mazama)
 are
 
reproducing
 at
 Wolf
 Haven
 initial
 survival
 rates
 were
 roughly
 30%
 (Wolf
 Haven,
 2009).
 
 Low
 
survival
 rates
 are
 indicative
 of
 many
 translocation
 projects,
 “methods
 still
 need
 to
 be
 developed
 
for
 translocation
 and
 re-­‐introduction
 the
 success
 rates
 for
 birds
 and
 mammals
 are
 not
 great”
 
(Source
 D,
 2009).
 
 Translocation
 is
 just
 one
 method
 that
 has
 been
 undertaken
 to
 preserve
 rare
 
and
 endangered
 species.
 
 
 
Reintroduction
 also
 relocates
 individuals
 or
 populations
 but
 typically
 the
 focus
 is
 on
 
augmenting
 populations
 that
 are
 endangered
 or
 extirpated
 at
 a
 certain
 locality
 through
 the
 
release
 of
 species
 raised
 in
 captivity
 into
 the
 wild.
 
 There
 have
 been
 several
 reintroduction
 
programs
 on
 the
 south
 Puget
 Sound
 prairies,
 including
 the
 Taylor’s
 Checkerspot
 (E.
 editha
 
taylori)
 butterfly
 a
 federally
 listed
 endangered
 species.
 
 A
 multi-­‐agency
 project
 funded
 by
 the
 
Department
 of
 Defense,
 captive
 rearing
 of
 Taylor’s
 Checkerspots
 (E.
 editha
 taylori)
 began
 at
 the
 
Oregon
 Zoo
 in
 2003
 (U.S.
 Fish
 and
 Wildlife,
 2009).
 
 The
 first
 release
 was
 made
 in
 2007
 at
 four
 
locations
 with
 limited
 success.
 
 Adaptive
 management
 decisions
 were
 made
 following
 the
 2007
 
release
 to
 increase
 the
 reproductive
 success
 of
 introduced
 populations
 (U.S.
 Fish
 and
 Wildlife,
 
2009).
 
 Restorationists
 are
 enhancing
 the
 habitat
 for
 Taylor’s
 Checkerspot
 (E.
 editha
 taylori)
 


 

 

Page
 
54
 


 

 

through
 the
 planting
 of
 host
 plants
 and
 creating
 a
 variety
 floral
 arrangements
 and
 micro-­‐
habitats
 (Source
 C,
 2009).
 
 Releases
 in
 2008
 were
 more
 successful
 as
 practitioners
 built
 upon
 
the
 success
 of
 the
 2007
 releases.
 
 While
 translocation
 and
 reintroduction
 are
 fairly
 accepted
 as
 
conservation
 methods
 and
 create
 some
 gene
 flow
 amongst
 endangered
 populations,
 climate
 
change
 may
 necessitate
 new
 measures
 for
 preserving
 diversity.
 
 
 
 
 
One
 of
 the
 most
 contentious
 issues
 within
 the
 field
 of
 conservation
 is
 assisted
 migration
 
or
 the
 practice
 of
 deliberately
 populating
 members
 of
 a
 species
 from
 their
 present
 habitat
 to
 a
 
new
 region
 outside
 of
 their
 historical
 range.
 
 Assisted
 migration
 is
 different
 from
 re-­‐
introduction
 efforts
 because
 the
 interaction
 between
 the
 introduced
 species
 and
 the
 current
 
ecosystem
 is
 uncertain.
 
 In
 the
 past
 humans
 have
 introduced
 species
 which
 significantly
 altered
 
ecosystem
 composition
 and
 functioning.
 
 Yet
 in
 the
 future
 if
 avoiding
 climate
 driven
 extinctions
 
is
 a
 conservation
 priority,
 then
 assisted
 migration
 must
 be
 considered
 a
 management
 option
 
(McLachlan
 et
 al.,
 2007).
 
 
We
 want
 to
 first
 do
 no
 harm,
 but
 there
 is
 also
 a
 realization
 that
 climate
 change
 is
 
something
 that
 is
 happening…
 If
 we
 ignore
 it
 we
 might
 miss
 opportunities
 to
 conserve
 
species
 and
 lose
 something
 that
 we
 can
 never
 get
 back.
 (Source
 N,
 2009)
 

 
When
 asked
 if
 assisted
 migration
 of
 prairie
 species
 will
 be
 necessary
 to
 maintain
 diversity
 as
 the
 
climate
 changes
 participants
 were
 split.
 
 43%
 of
 responses
 thought
 assisted
 migration
 would
 
not
 be
 necessary
 while
 57%
 thought
 it
 would
 be.
 
 
 
As
 a
 simple
 yes
 or
 no
 question
 it
 would
 appear
 that
 participants
 were
 relatively
 evenly
 
split
 over
 utilization
 of
 assisted
 migration
 strategies
 on
 the
 south
 Puget
 Sound
 prairie
 
landscape.
 
 Yet
 an
 in
 depth
 analysis
 demonstrates
 that
 there
 is
 more
 consensus
 than
 what
 
appears
 on
 the
 surface.
 
 Attitudes
 about
 assisted
 migration
 can
 be
 categorized
 into
 three
 


 

 

Page
 
55
 


 

 

positions
 aggressive
 assisted
 migration,
 avoidance
 of
 assisted
 migration
 and
 constrained
 
assisted
 migration
 (McLachlan
 et
 al.,
 2007).
 
 Advocates
 for
 aggressive
 assisted
 migration
 are
 
motivated
 by
 the
 imminent
 threat
 of
 extinction
 and
 the
 loss
 of
 biodiversity
 due
 to
 accelerated
 
anthropogenic
 climate
 changes.
 
 
 
We
 have
 too
 many
 islands
 in
 this
 world
 and
 if
 we
 are
 putting
 value
 on
 rare
 plants
 we
 are
 
going
 to
 have
 to
 make
 sure
 they
 persist
 and
 are
 able
 to
 migrate.
 
 Assisted
 migration
 is
 
basically
 where
 a
 lot
 of
 our
 plant
 and
 animal
 conservation
 is
 going.
 (Source
 D,
 2009)
 

 
 
Only
 14%
 of
 participants
 could
 be
 categorized
 as
 having
 an
 aggressive
 approach.
 
 Most
 (72%)
 of
 
 
participants
 are
 more
 cautious
 regarding
 assisted
 migration
 and
 have
 a
 constrained
 approach
 
which
 attempts
 to
 balance
 the
 benefits
 and
 risks.
 
 This
 perspective
 ranges
 broadly
 between
 
aggressive
 and
 avoidance
 from;
 “maybe
 for
 certain
 species”
 (Source
 I,
 2009)
 to
 “seems
 to
 me
 
like
 a
 last
 ditch
 effort”
 (Source
 B,
 2009).
 
 Once
 again
 uncertainty
 of
 the
 ecologically
 impacts
 and
 
climate
 models,
 along
 with
 a
 lack
 of
 research,
 monitoring
 and
 planning
 were
 cited
 as
 reasons
 to
 
balance
 the
 utilization
 of
 assisted
 migration.
 
 Only
 14%
 of
 participants
 could
 be
 categorized
 as
 
completely
 rejecting
 assisted
 migration
 as
 a
 conservation
 option
 on
 the
 south
 Puget
 Sound
 
prairie
 landscape;
 
 
 
I
 do
 not
 think
 assisted
 migration
 will
 be
 an
 issue.
 
 What
 we
 are
 doing
 is
 introducing
 
species
 into
 different
 parts
 of
 the
 habitat
 that
 they
 might
 not
 have
 been
 present
 in
 
before,
 getting
 enough
 population
 established
 so
 that
 they
 might
 survive
 and
 do
 well.
 
(Source
 K,
 2009)
 

 
 
Enabling
 species
 to
 persist
 in
 their
 current
 habitat
 and
 assisting
 the
 migration
 of
 species
 will
 
both
 be
 dependent
 upon
 adaptive
 divergence
 and
 genetic
 flow
 (Davis
 et
 al.,
 2005).
 
 In
 all
 
likelihood
 both
 persistence
 and
 assisted
 migration
 strategies
 will
 be
 necessary
 to
 maintain
 
genetic
 diversity
 as
 the
 climate
 changes.
 
 The
 adaptive
 management
 approach
 to
 restoration
 
techniques,
 seed
 sourcing,
 translocation
 and
 reintroduction
 seems
 to
 be
 indicative
 of
 how
 

 

 

Page
 
56
 


 

 

practitioners
 might
 adopt
 assisted
 migration
 strategies.
 
 In
 the
 past,
 new
 methods
 were
 applied
 
in
 a
 controlled
 setting,
 analyzed
 and
 adapted
 to
 what
 worked
 best
 (Source
 M,
 2009).
 
 Currently
 
scientists
 are
 researching
 the
 potential
 for
 Willamette
 Valley
 prairie
 species
 to
 migrate
 to
 the
 
south
 Puget
 Sound
 prairies
 under
 simulated
 climatic
 scenarios
 in
 a
 controlled
 experiment.
 
 It
 
appears
 as
 if
 the
 process
 of
 examining
 assisted
 migration
 strategies
 for
 the
 south
 Sound
 Prairies
 
has
 begun.
 
 As
 the
 composition
 of
 our
 local
 ecosystems
 become
 less
 and
 less
 familiar,
 it
 will
 
challenge
 our
 understanding
 of
 what
 should
 be
 restored.
 
 
 
 
 
 
 
 
 
 

 

What
 does
 “native”
 mean
 anyway?
 
Typically,
 we
 refer
 to
 the
 plants
 that
 have
 existed
 at
 a
 certain
 location
 for
 an
 extended
 
period
 of
 time
 as
 native
 or
 endemic.
 
 Many
 of
 the
 bunchgrass
 prairies
 which
 exist
 today,
 
including
 several
 on
 the
 south
 Puget
 Sound
 landscape,
 are
 part
 of
 the
 Washington
 Natural
 
Heritage
 Program
 (WNHP).
 
 WNHP
 was
 established
 in
 1981
 to
 protect
 outstanding
 examples
 of
 
native
 ecosystems;
 habitat
 for
 endangered,
 threatened
 and
 sensitive
 plants
 and
 animals,
 along
 
with
 scenic
 landscapes.
 
 “Originally
 we
 had
 an
 image
 of
 what
 the
 composition
 and
 structure
 of
 
native
 prairies
 should
 be
 like
 based
 on
 the
 State
 Natural
 Heritage
 Program
 descriptions”
 
(Source
 J,
 2009).
 As
 climatic
 changes
 prompt
 range
 shifts
 and
 alters
 community
 composition
 
new
 species
 assemblages
 will
 emerge,
 what
 is
 native
 in
 Washington
 currently
 might
 be
 more
 
suitable
 elsewhere
 and
 vice
 versa
 (Source
 G,
 2009).
 
 
It
 appears
 as
 if
 prairie
 restoration
 is
 shifting
 from
 a
 native
 or
 historical
 approach
 to
 a
 
more
 ecological
 perspective.
 Historic
 composition
 is
 becoming
 less
 of
 a
 focus
 as
 a
 growing
 drive
 
towards
 managing
 for
 rarer
 species
 develops
 (Source
 F,
 2009).
 
 
 When
 asked
 “what
 does
 the
 


 

 

Page
 
57
 


 

 

word
 native
 mean
 to
 you,
 and
 is
 it
 still
 appropriate
 in
 this
 time
 of
 climate
 change?”
 all
 
participants
 believe
 that
 the
 word
 native
 will
 still
 have
 utility,
 but
 to
 varying
 degrees.
 
 For
 some,
 
“It
 is
 totally
 appropriate.
 
 I
 do
 not
 think
 things
 will
 really
 be
 impacted,
 certainly
 on
 the
 prairies
 
whatever
 is
 native
 now
 will
 still
 be
 native
 in
 the
 future”
 (Source
 K,
 2009).
 
 Yet
 others
 believe
 
that,
 “In
 a
 couple
 of
 generations
 people
 are
 not
 even
 going
 to
 remember
 what
 was
 native
 or
 
non-­‐native.
 
 This
 is
 the
 attitude
 in
 Europe
 and
 the
 old
 world
 where
 they
 see
 function
 and
 
service”
 (Source
 E,
 2009).
 
 The
 reality
 is
 that
 the
 ranges
 of
 populations
 are
 constantly
 in
 flux,
 
and
 society
 defines
 what
 is
 native;
 
 
 
 
This
 was
 not
 a
 big
 issue
 five,
 ten
 years
 ago.
 
 I
 think
 there
 are
 no
 clear
 cut
 answers
 out
 
there.
 
 The
 whole
 aspect
 of
 defining
 what
 we
 were
 going
 to
 restore
 was
 a
 lot
 simpler
 
before
 climate
 change.
 
 The
 fact
 that
 communities
 might
 change
 is
 a
 new
 concept
 to
 
most
 restorationist.
 
 If
 we
 do
 not
 start
 thinking
 proactively
 about
 what
 these
 natural
 
areas
 should
 look
 like
 in
 the
 future
 we
 may
 fairly
 quickly
 start
 losing
 species.
 (Source
 J,
 
2009)
 

 
 
An
 85%
 majority
 of
 practitioners
 expressed
 that
 the
 meaning
 of
 the
 word
 native
 will
 broaden
 to
 
encompass
 a
 wider
 range
 of
 species.
 
 A
 broader
 definition
 will
 enable
 restoration
 to
 still
 be
 
native
 without
 the
 impracticality
 of
 recreating
 a
 historic
 pre-­‐settlement
 landscape
 in
 a
 warmer
 
invaded
 world,
 “we
 are
 trying
 to
 be
 open
 minded
 about
 that.
 We
 need
 to
 recognize
 that
 the
 
earth
 is
 a
 dynamic
 system
 and
 sometimes
 we
 need
 to
 recognize
 that
 we
 should
 not
 force
 old
 
restoration
 targets
 into
 this
 dynamic
 system”
 (Source
 C,
 2009).
 
 If
 the
 primary
 objective
 of
 
restoration
 is
 no
 longer
 to
 re-­‐create
 a
 historic
 species
 composition,
 then
 how
 do
 practitioners
 
define
 what
 to
 restore
 or
 conserve?
 
 
 
 
 
 
 

 
 
Roughly
 50%
 of
 participants
 maintained
 that
 native
 will
 still
 have
 utility
 in
 terms
 of
 
limiting
 the
 negative
 ecological
 consequences
 of
 the
 plethora
 of
 invasive
 species.
 
 Invasive
 

 

 

Page
 
58
 


 

 

species
 are
 currently
 one
 of
 the
 significant
 threats
 to
 prairie
 conservation
 on
 the
 south
 Puget
 
Sound
 landscape
 “In
 an
 ecological
 sense
 we
 found
 that
 when
 there
 is
 a
 site
 dominated
 by
 
pasture
 grasses
 that
 is
 really
 all
 that
 you
 have
 out
 there.
 
 Invasive
 species
 will
 dominate
 
ecosystems
 and
 make
 them
 less
 resilient”
 (Source
 M,
 2009).
 Ecologically,
 invasive
 species
 have
 
particular
 fitness
 traits
 that
 enable
 rapid
 colonization
 and
 establishment
 (Radosevich
 et
 al.,
 
2003).
 
 Evolutionary
 theory,
 paleontological
 data
 and
 observed
 migrations
 infer
 that
 without
 
management
 the
 composition
 of
 prairie
 ecosystems
 will
 increasingly
 become
 composed
 of
 
species
 which
 exhibit
 phenotypic
 plasticity,
 high
 fecundity
 and
 high
 dispersal
 rates.
 Prairie
 
researchers
 in
 Minnesota
 found
 that
 one
 method
 of
 increasing
 resilience
 to
 invasion
 and
 
perturbations
 was
 to
 increase
 the
 abundance
 and
 richness
 of
 native
 species
 (Tilman,
 1998).
 
 
"Native"
 no
 longer
 refers
 just
 to
 a
 species
 that
 existed
 on
 a
 landscape
 during
 a
 specific
 historical
 
period
 there
 is
 also
 an
 underlying
 ecological
 meaning.
 
 The
 term
 implies
 that
 these
 species
 are
 
beneficial
 to
 eco-­‐system
 functioning,
 provide
 ecosystem
 service
 and
 will
 enhance
 the
 overall
 
resilience
 of
 the
 ecosystem.
 
 
 
 
 
 
 
 
 
 
While
 predicting
 exactly
 what
 species
 composition
 will
 look
 like
 over
 the
 coming
 years
 is
 
difficult,
 the
 end
 result
 will
 inevitably
 be
 ecosystems
 with
 very
 different
 species
 assemblages.
 
 
In
 order
 to
 preserve
 diversity,
 practitioners
 are
 attempting
 to
 sustain
 the
 functioning
 of
 the
 
ecosystem
 as
 a
 whole.
 
 Selecting
 species
 according
 to
 function
 places
 an
 emphasis
 on
 the
 traits
 
or
 services
 a
 species
 provides,
 
now
 there
 are
 a
 lot
 of
 native
 species
 that
 have
 turned
 to
 non-­‐native
 species
 to
 fill
 
certain
 functional
 roles.
 
 Native
 plants
 will
 always
 be
 preferred
 in
 restoration
 but
 when
 
we
 value
 a
 function
 we
 will
 turn
 to
 non-­‐native
 species.
 (Source
 D,
 2009)
 

 


 

 

Page
 
59
 


 

 

One
 common
 example
 of
 a
 non-­‐native
 species
 that
 is
 providing
 a
 functional
 role
 as
 a
 host
 plant
 
is
 English
 plantain
 (Plantago
 lanceolata).
 
 The
 federally
 endangered
 Taylor’s
 Checkerspot
 (E.
 
editha
 taylori)
 utilizes
 a
 rare
 annual,
 short
 spur
 sea
 blush
 (Plectritis
 congesta),
 as
 a
 larva
 host
 
plant,
 in
 the
 absence
 of
 which
 some
 populations
 of
 Taylor’s
 Checkerspot
 (E.
 editha
 taylori)
 will
 
turn
 to
 plantain
 (P.
 lanceolata).
 
 It
 is
 easy
 for
 conservationist
 to
 source
 plantain
 (P.
 lanceolata)
 
which
 is
 a
 relatively
 common
 weed
 on
 the
 south
 Puget
 Sound
 prairies;
 in
 contrast
 it
 is
 difficult
 
to
 grow
 the
 limited
 amount
 of
 seablush
 (P.
 congesta)
 seed.
 
 In
 lieu
 of
 seablush
 (P.
 
 congesta),
 
conservationists
 have
 turned
 to
 utilizing
 English
 plantain
 (P.
 lanceolata)
 to
 enhance
 habitat
 for
 
the
 Taylor’s
 Checkerspot
 (E.
 editha
 taylori)
 (Source
 B,
 2009).
 
 Plantain
 (P.
 lanceolata)
 is
 just
 one
 
example
 of
 an
 introduced
 species
 which
 is
 filling
 an
 important
 functional
 role
 as
 historical
 
species
 disappear
 from
 the
 south
 Puget
 Sound
 prairie
 landscape.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Many
 people
 assign
 values
 to
 plants,
 e.g.
 natives
 are
 good
 and
 invasive
 are
 bad.
 As
 the
 
climate
 changes
 which
 plants
 we
 value
 and
 choose
 to
 maintain
 will
 also
 change.
 
 Ecologically
 
speaking,
 “species
 move,
 evolve
 and
 disappear.
 
 If
 extinction
 or
 migration
 is
 not
 a
 man
 caused
 
issue,
 is
 it
 ok?”
 (Source
 I,
 2009).
 
 The
 reality
 is
 that
 it
 is
 impossible
 to
 separate
 people
 from
 the
 
landscape;
 we
 will
 always
 have
 an
 impact
 however
 minute.
 
 Invasive
 species
 are
 often
 
deleterious
 to
 diversity,
 but
 a
 historical
 mindset
 about
 what
 is
 native
 may
 also
 decrease
 
diversity
 in
 a
 warming
 world.
 
 As
 species
 become
 less
 competitive
 in
 their
 historical
 range
 it
 is
 
imperative
 that
 new
 species
 are
 introduced
 which
 provide
 similar
 functioning
 and
 services.
 
 If
 
practitioners
 adhere
 to
 a
 strict
 historical
 native
 mindset
 then
 resources
 or
 opportunities
 to
 
enhance
 species
 that
 are
 ecologically
 beneficial
 could
 be
 squandered.
 
 
 
 
 
 
The
 original
 south
 Puget
 Sound
 prairie
 landscape
 was
 never
 catalogued
 or
 studied
 in
 


 

 

Page
 
60
 


 

 

depth
 before
 being
 altered
 by
 development,
 fragmentation
 and
 invasive
 species.
 
 How
 many
 
plant,
 invertebrate,
 and
 vertebrate
 species
 were
 extirpated
 as
 the
 plow
 turned
 the
 prairies
 into
 
farms?
 
 We
 may
 never
 know
 the
 extent
 to
 which
 the
 composition,
 structure
 and
 size
 of
 the
 
prairie
 landscape
 was
 altered.
 
 Participants
 reflected
 upon
 the
 loss
 of
 diversity,
 spatial
 scale
 and
 
social
 value.
 
 A
 majority
 of
 participants
 acknowledged
 that
 the
 original
 species
 composition
 and
 
size
 of
 the
 prairies
 will
 never
 be
 restored.
 “Even
 the
 highest
 quality
 prairie
 left
 is
 still
 invaded
 
and
 there
 really
 is
 no
 way
 to
 go
 back”
 (Source
 F,
 2009).
 The
 hope
 of
 many
 participants
 was
 that
 
they
 could
 maintain
 the
 prairies
 for
 “no
 net
 loss
 of
 diversity”
 (Source
 J,
 2009)
 and
 possible
 
expand
 the
 size
 of
 the
 existing
 prairies
 by
 “10%
 or
 so”
 (Source
 M,
 2009).
 
 While
 we
 can
 never
 
get
 back
 what
 was
 once
 lost,
 we
 can
 hold
 on
 to
 most
 of
 what
 is
 left,
 and
 with
 climate
 change
 

maybe
 create
 something
 new
 in
 the
 process.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 

 

Page
 
61
 


 

 

Conclusion
 
 

 

While
 past
 research
 has
 focused
 upon
 what
 actions
 practitioners
 should
 take
 to
 adapt
 to
 

climate
 change.
 
 This
 research
 focused
 upon
 the
 actions
 practitioners
 have
 taken
 and
 the
 
attitude
 they
 posses
 for
 future
 change.
 
 While
 the
 sample
 size
 was
 relatively
 small,
 participants
 
represented
 10
 different
 nonprofit,
 state,
 federal
 and
 academic
 organizations.
 
 Furthermore
 the
 
significant
 ecological
 challenges
 posed
 by
 fragmentation
 and
 invasive
 species
 to
 Puget
 Prairie
 
restoration
 commonly
 confront
 the
 field
 of
 restoration
 as
 a
 whole.
 
 All
 participants
 had
 
considered
 the
 affects
 of
 climate
 change,
 in
 part
 due
 to
 the
 high
 availability
 of
 climate
 
projections
 downscaled
 to
 western
 Washington.
 
 These
 factors
 indicate
 that
 these
 results
 while
 
descriptive
 for
 the
 population
 of
 south
 Puget
 Sound
 prairie
 practitioners
 may
 also
 be
 indicative
 
of
 truths
 in
 other
 regions
 and
 ecosystems.
 
 
 
 
 
 
The
 south
 Puget
 Sound
 prairie
 landscape
 is
 fragmented.
 
 Due
 to
 the
 lack
 of
 connectivity
 
practitioners
 are
 beginning
 to
 look
 abroad
 for
 restoration
 material
 in
 order
 to
 maintain
 and
 
increase
 diversity.
 
 The
 utilization
 of
 regional
 seed
 mixtures
 theoretically
 will
 increase
 the
 
genetic
 diversity
 of
 populations
 making
 the
 prairie
 ecosystem
 more
 resilient
 as
 there
 is
 a
 
greater
 chance
 of
 specific
 genotypes
 adapting
 to
 climate
 changes.
 
 Translocation
 and
 
reintroduction
 are
 currently
 being
 utilized
 to
 enhance
 or
 maintain
 populations
 of
 endangered
 
species.
 
 Finally,
 assisted
 migration
 or
 facilitating
 the
 movement
 of
 species
 to
 new
 areas
 is
 
being
 explored
 and
 researched.
 
 A
 majority
 of
 practitioners
 had
 a
 constrained
 perspective
 
regarding
 assisted
 migration
 strategies
 which
 attempts
 to
 balance
 the
 benefits
 and
 risks
 of
 
introducing
 species
 to
 an
 eco-­‐system.
 
 As
 the
 practice
 of
 restoration
 adapts
 to
 climate
 change
 
current
 historical
 targets
 are
 being
 challenged
 and
 a
 new
 mindset
 which
 values
 function
 and
 


 

 

Page
 
62
 


 

 

service
 is
 being
 cultivated.
 
 
 
While
 the
 main
 goal
 of
 prairie
 restoration
 has
 been
 and
 will
 continue
 to
 be
 increasing
 
diversity
 in
 the
 hopes
 of
 preserving
 a
 suite
 of
 species,
 the
 composition
 of
 the
 species
 that
 are
 
restored
 is
 changing.
 
 The
 field
 of
 restoration
 is
 undergoing
 a
 paradigm
 shift
 from
 a
 historical
 to
 
an
 ecological
 perspective.
 
 Restoration
 targets
 that
 focus
 on
 recreating
 a
 pre-­‐settlement
 
landscape
 are
 becoming
 less
 and
 less
 realistic.
 
 Even
 the
 highest
 quality
 prairie
 on
 the
 south
 
Puget
 Sound
 landscape
 is
 comprised
 of
 20%
 introduced
 species.
 
 
 Evolutionary
 theory,
 
paleontological
 data
 and
 observed
 migrations
 infer
 that
 the
 composition
 of
 prairie
 ecosystems
 
will
 increasingly
 become
 composed
 of
 species
 which
 exhibit
 phenotypic
 plasticity,
 high
 
fecundity
 and
 high
 dispersal
 rates.
 
 Practitioners
 are
 beginning
 to
 redefine
 restoration
 
according
 to
 the
 functional
 roles
 species
 provide
 in
 hopes
 of
 preserving
 the
 important
 aspects
 
of
 the
 prairie
 ecosystem.
 
 The
 concept
 of
 native
 still
 has
 utility
 in
 an
 ecological
 sense
 that
 some
 
species
 are
 beneficial
 and
 enhance
 the
 resilience
 of
 the
 ecosystem.
 
 
 Most
 practitioners
 
expressed
 that
 the
 meaning
 of
 native
 will
 broaden
 to
 encompass
 a
 wider
 range
 of
 species.
 
 
 
 
 
The
 south
 Puget
 Sound
 prairie
 landscape
 will
 always
 need
 maintenance
 to
 control
 
invasive
 species,
 restore
 ecological
 process
 and
 increase
 diversity.
 
 In
 order
 for
 prairies
 to
 
persist
 the
 desire
 to
 maintain
 them
 must
 also
 remain.
 
 Currently
 there
 is
 a
 strong
 commitment
 
from
 Federal,
 State,
 County
 and
 non-­‐profit
 agencies
 to
 preserve
 and
 enhance
 the
 prairie
 
ecosystem.
 
 These
 agencies
 collaborate
 with
 one
 another,
 which
 has
 lead
 to
 a
 growing
 
understand
 of
 how
 to
 restore
 bunchgrass
 prairies
 on
 the
 south
 Puget
 Sound
 landscape;
 
 
 
 
Early
 on
 we
 were
 trying
 to
 see
 what
 works
 more
 in
 a
 demonstration
 fashion
 and
 
 now
 
we
 are
 doing
 things
 in
 a
 much
 more
 valid,
 scientifically
 supported
 way.
 
 We
 are
 learning
 
as
 we
 go
 and
 a
 lot
 more
 people
 are
 focusing
 on
 prairies
 and
 grasslands.
 
 That
 collective
 
of
 science
 and
 scientist
 makes
 for
 faster
 information
 processing,
 more
 collaboration
 and
 

 

 

Page
 
63
 


 

 

better
 restoration.
 (Source
 M,
 2009)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While
 the
 practice
 of
 prairie
 restoration
 has
 become
 more
 effective,
 significant
 challenges
 
remain.
 
 While
 all
 participants
 viewed
 climate
 change
 as
 a
 challenge
 to
 restoration,
 there
 was
 
less
 consensus
 regarding
 what
 affect
 climate
 change
 is
 having
 on
 the
 prairie
 landscape
 and
 how
 
the
 practice
 of
 restoration
 will
 adapt
 to
 the
 vegetation
 shifts
 projected
 over
 the
 next
 century.
 
 
 
This
 case
 study
 demonstrates
 that
 climate
 change
 is
 affecting
 restoration
 practices
 on
 
the
 south
 Puget
 Sound
 Prairie
 landscape.
 
 There
 is
 much
 consensus
 amongst
 practitioners
 as
 
they
 begin
 to
 research
 new
 methods
 and
 consider
 options.
 
 All
 practitioners
 desire
 to
 know
 
more
 about
 the
 effects
 climate
 change
 will
 have
 on
 the
 prairies
 so
 they
 can
 make
 more
 
informed
 decisions.
 
 While
 the
 challenge
 is
 great
 the
 current
 network
 of
 professionals,
 agencies
 
and
 organizations
 are
 collaborating
 in
 order
 to
 manage
 the
 prairies
 more
 efficiently
 and
 
effectively.
 
 As
 new
 research,
 techniques
 and
 methods
 become
 available
 these
 same
 networks
 
will
 be
 able
 to
 disseminate
 best
 practices
 regarding
 climate
 change.
 
 People
 have
 maintained
 
the
 bunchgrass
 prairie
 landscape
 for
 millennium,
 and
 will
 continue
 to
 do
 so
 into
 the
 future.
 
 
 

 


 

 

Page
 
64
 


 

 

Tables
 and
 Appendices
 
Figure
 1).
 
 The
 table
 below
 lists
 some
 of
 the
 common
 prairie
 species
 that
 were
 utilized
 by
 the
 
Salish
 for
 food,
 medicine
 and
 tools.
 
 The
 prairie
 landscape
 was
 vitally
 important
 to
 the
 Salish
 
culture
 as
 is
 evident
 by
 the
 multitude
 of
 plant
 species
 which
 were
 utilized.
 
 
 

 
 
 
 
 
Common
 Name
 

 
Forbs
 
Bracken,
 bracken
 fern
 
Chocolate
 lily
 
Columbine
 
Common
 camas
 
Common
 vetch
 
Crown
 brodiaea
 
Death
 Camas
 
Fine-­‐leaved
 lomatium
 
Fireweed
 
Giant
 camas
 

Scientific
 Name
 

 

 
Pteridium
 aquilinum
 
Fritillaria
 lanceolata
 
Aquilegia
 
Camassia
 quamash
 
Vica
 sativa
 
Brodiaea
 coronaria
 
Zigadenus
 venenosus
 
Lomatium
 utriculatum
 
Epilobium
 angustifolium
 
Camassia
 leichtlinii
 
Dodecatheon
 
Henderson's
 Shooting
 Star
  hendersonii
 
Hieracium
 
Houndstounge
 hawkweed
  cynoglossoides
 
Kinnikinnick
 
Arctostaphylos
 uva-­‐ursi
 
Lupine
 
Lupinus
 albicaulis
 
Narrow
 leafed
 onion
 
Allium
 amplectens
 
Nuttall’s
 peavine
 
 
Lathyrus
 nevadensis
 
Oregon
 Iris
 
Iris
 tenax
 
Prairie
 Violet
 
Viola
 adunca
 
Fine-­‐leaved
 lomatium
 
Lomatium
 utriculatum
 
Puget
 balsamroot
 
Balsamorhiza
 deltoidea
 
Small
 camas
 
Camassia
 quamash
 
Stinging
 nettle
 
Urtica
 dioica
 
Sword
 fern
 
Polystichum
 munitum
 
Wild
 strawberry
 
Fragaria
 Virginiana
 
Yarrow
 
Achillea
 millefolium
 

 

 
Shrubs
 

 
Blackcap
 raspberry
 
Rubus
 leucodermis
 
Cascara
 sagrada
 
Rhamnus
 purshianus
 
Chokecherry
 
Prunus
 virginiana
 
Gooseberries
 
Ribes
 divaricatum
 


 

 

Page
 
65
 

Family
 

 

 
Dennstaedtiaceae
 
Liliaceae
 
Ranunculaceae
 
Liliaceae
 
Fabaceae
 
Liliaceae
 
Liliaceae
 
Apiaceae
 
Onagraceae
 
Liliaceae
 

Use
 

 

 
Food
 
Food
 
Food
 
Food
 
Food
 
Food
 
Medicine
 
Food
 
Food,
 Blankets
 
Food
 

Primulaceae
 

Food
 

Asteraceae
 
Ericaceae
 
Fabaceae
 
Alliaceae
 
Fabaceae
 
Iridaceae
 
Violaceae
 
Apiaceae
 
Asteraceae
 
Liliaceae
 
Urticaceae
 
Dryopteridaceae
 
Rosaceae
 
Asteraceae
 

 

 
Rosaceae
 
Rhamnaceae
 
Rosaceae
 
Grossulariaceae
 

Medicine
 
Smoking/Food
 
Food
 
Food
 
Forage
 Food
 
cordage
 
Food
 
Food
 
Food/Clothing
 
Food
 
food,
 cordage,
 medicine
 
Food
 
Food
 
Medicine/Soap
 
 

 

 
Food
 
Medicine
 
Food
 
Food
 


 

 


 

Oceanspray
 
Pacific
 dogwood
 
Red
 flowering
 currant
 
Red
 huckleberry
 
Salal
 
Salmonberry
 
Service
 berries
 
Snowberry
 
Tall
 oregon
 grape
 
Trailing
 blackberry
 
Western
 beaked
 hazel,
 
Hazelnut
 

 
Trees
 
Garry
 oak
 

Holodiscus
 discolor
 
Corylus
 nuttallii
 
Ribes
 sanguineum
 
Vaccinium
 parvifolium
 
Gaultheria
 shallon
 
Rubus
 spectabilis
 
Amelanchier
 alnifolia
 
Symphoricarpos
 albus
 
Mahonia
 aquifolium
 
Rubus
 ursinus
 
 

Rosaceae
 
Cornaceae
 
Grossulariaceae
 
Ericaceae
 
Ericaceae
 
Rosaceae
 
Rosaceae
 
Caprifoliaceae
 
Berberidaceae
 
Rosaceae
 

Medicine/Tools
 
Medicine
 
Food
 
Food
 
Food/Fuel
 
Food
 
Food
 
Medicine/Soap
 
Food/medicine
 
Food
 

Corylus
 cornuta
 

 

 
Quercus
 garryana
 

Betulaceae
 

 

 
Fagaceae
 

Food
 

 

 
Food
 

Sources:
 
 (Norton,
 1979),
 (Storm,
 2004),
 (Leopold
 and
 Boyd,
 1999)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page
 
66
 


 

 


 

 
Figure
 B).
 
 Boyd’s
 1996
 computational
 analysis
 demonstrating
 the
 population
 of
 interior
 valley
 
Salish
 tribes
 is
 more
 objective
 than
 past
 population
 estimates.
 
 The
 anchor
 number
 or
 earliest
 
reliable
 census
 data
 was
 utilized
 to
 determine
 population
 in
 1770
 and
 1850.
 
 
 
 
 
 
 
 

 
Interior
 Valley
 Population
 1770-­‐1850
 
Group
 


 
Upper
 Chehalis
 
Cowlitz
 
Kwalhioqua
 Clatskine
 
Cathlamet,
 Wappato,
 Clackamas,
 
Cascades
 
Kalapuyans
 
Takelma/Interior
 Athapascans
 
Interior
 valleys
 epidemic
 Totals
 


 

Anchor
 
No
 
1600
 
2400
 
1350
 

1770
 pre
 Epidemic
  1850
 post
 Epidemic
 
#
 
#
 

 

 
2880
 
216
 
4320
 
165
 
2430
 
21
 

6660
 
8200
 
3000
 

 23210
 

11988
 
14760
 
4500
 
40,878
 

300
 
560
 
797
 

2,059
 


 


 

Figure
 C).
 
 This
 graph
 displays
 population
 growth
 in
 the
 five
 counties
 that
 contain
 significant
 
prairie
 remnants.
 
 The
 population
 has
 grown
 exponentially
 since
 the
 1900’s
 based
 upon
 census
 
data
 from
 Washington
 State.
 
 
 


 


 

 

 

Page
 
67
 


 

 

Figure
 D).
 
Interview
 Questions
 
1.)
 
 How
 long
 have
 you
 been
 working
 with
 prairies
 and
 in
 what
 capacity?
 
 
 
2.)
 What
 are
 your
 current
 restoration
 and
 conservation
 goals
 and
 how
 have
 they
 changed
 over
 
time?
 
 
 
3.)
 What
 methods
 are
 you
 using
 to
 achieve
 your
 restoration
 goals
 (introduction,
 reintroduction,
 
augmentation,
 fire,
 herbicide,
 invasive
 removal)?
 
 How
 have
 these
 methods
 changed
 over
 time?
 
 
 
4.)
 
 In
 your
 experience
 what
 is
 the
 best
 way
 to
 manage
 invasive
 species?
 
 
 
5.)
 What
 considerations
 do
 you
 give
 to
 sourcing
 restoration
 materials,
 seeds,
 individuals?
 
 
6.)
 What
 considerations
 if
 any
 do
 you
 give
 to
 affecting
 ecosystem
 resilience?
 
 
 
7.)
 How
 would
 you
 describe
 the
 redundancy
 of
 the
 prairie
 ecosystem,
 are
 there
 many
 species
 
that
 provide
 similar
 ecologically
 functions?
 
 
B.)
 How
 do
 you
 classify
 species
 when
 performing
 restoration?
 
 
 Do
 you
 look
 at
 functional
 
groupings,
 taxonomically
 groupings,
 or
 both?
 Given
 your
 experience
 is
 it
 safe
 to
 
introduce
 non-­‐native
 species
 which
 provide
 similar
 functional
 roles
 as
 natives?
 
8).
 Is
 climate
 change
 a
 challenge
 or
 an
 opportunity
 for
 prairie
 conservation?
 
 
 
9.)
 When
 is
 the
 appropriate
 time
 to
 change
 restoration
 practices
 in
 light
 of
 climate
 change?
 
10.)
 It
 seems
 as
 if
 conservation
 has
 shifted
 from
 a
 “native”
 approach
 to
 a
 more
 ecological
 
community
 perspective.
 
 What
 does
 the
 word
 native
 mean
 to
 you,
 and
 is
 it
 still
 appropriate
 in
 
this
 time
 of
 climate
 change?
 
 
11.)
 
 Do
 you
 think
 assisted
 migration
 of
 prairie
 species
 will
 be
 necessary
 to
 maintain
 
populations
 as
 the
 climate
 changes?
 
 
 
12.)
 What
 is
 your
 perception
 of
 what
 has
 been
 lost
 and
 what
 can
 we
 realistically
 hope
 to
 
restore?
 
 
 
13.)
 
 One
 of
 the
 important
 original
 functions
 of
 the
 prairies
 was
 food
 and
 medicine.
 
 Given
 the
 
current
 state
 of
 the
 prairies,
 do
 you
 think
 it
 is
 feasible
 to
 harvest
 food
 from
 them
 again?
 
 If
 so
 
what
 effect
 might
 harvest
 have
 on
 restoration
 efforts?
 
 
 
 
 
 
 


 

 

 

 

 

Page
 
68
 


 

 


 


 

 

Page
 
69
 


 

 

Works
 Cited
 
Agee
 J.
 (1993).
 
 Fire
 ecology
 of
 Pacific
 Northwest
 forest.
 
 Island
 Press,
 Washington
 D.C.
 
 
 
 
 

 

 
Anderson
 K.
 (2005).
 
 Tending
 the
 Wild;
 Native
 American
 knowledge
 and
 the
 management
 of
 
California’s
 resources.
 University
 of
 California
 press,
 Berkeley.
 
 
 

 
Barnosky
 C.
 (1985).
 Late
 Quaternary
 vegetation
 near
 Battle
 Ground
 Lake,
 southern
 Puget
 
Trough,
 Washington.
 The
 Geological
 Society
 of
 America
 Bulletin
 96
 (2),
 263-­‐271.
 

 
Beckwith
 B.
 (2004).
 
 The
 queen
 root
 of
 this
 clime:
 ethnoecological
 investigations
 of
 blue
 camas
 
and
 its
 landscapes
 on
 southern
 Vancouver
 Island,
 British
 Columbia.
 
 University
 of
 Victoria,
 
Dissertation.
 
 
 
 
 
 

 
Boyd
 R.
 (1999).
 
 The
 coming
 of
 the
 spirit
 of
 pestilence.
 
 University
 of
 Washington
 Press,
 Seattle
 
WA.
 
 
 

 
Crawford
 R.
 and
 Hall
 H.
 (1997).
 
 Changes
 in
 the
 South
 Puget
 Prairie
 Landscape.
 Ecology
 and
 
Conservation
 of
 the
 South
 Puget
 Sound
 Prairie
 Landscape,
 Patrick
 Dunn
 and
 
 
Kern
 Ewing
 (eds.),
 17-­‐28.
 The
 Nature
 Conservancy
 of
 Washington,
 Seattle.
 

 
Climate
 Impacts
 Group
 (2009).
 The
 Washington
 climate
 change
 impacts
 assessment,
 M.
 
McGuire
 Elsner,
 J.Littell,
 and
 L
 Whitely
 Binder
 (eds).
 Center
 for
 Science
 in
 the
 Earth
 System,
 
Joint
 Institute
 for
 the
 Study
 of
 the
 Atmosphere
 and
 Oceans,
 University
 of
 Washington,
 Seattle,
 
WA.
 

 
Crumpacker
 D.,
 Box
 E.,
 Hardin
 E.
 (2001).
 
 Implications
 of
 climatic
 warming
 for
 conservation
 of
 
native
 trees
 and
 shrubs
 in
 Florida.
 
 Conservation
 Biology
 15
 (4),
 1008-­‐1020.
 
 

 
Dale
 V.,
 Joyce
 L.,
 McNulty
 S.,
 Neilson
 R.,
 Ayres
 M.,
 Flannigan
 M.,
 Hanson
 P.,
 Irland
 L.,
 Lugo
 A.,
 
Peterson
 C.,
 Simberloff
 D.,
 Swanson
 F.,
 Stocks
 B.,
 Wotton
 M.
 (2001).
 
 Climate
 change
 and
 forest
 
ecosystems:
 climate
 change
 and
 forest
 disturbances.
 
 Bioscience
 51
 (9),
 723-­‐734.
 

 
Davis
 M.,
 Shaw
 R.
 (2001).
 
 Range
 shifts
 and
 adaptive
 responses
 to
 Quaternary
 climate
 change.
 
 
American
 Association
 for
 the
 Advancement
 of
 Science
 5517
 (292),
 
 673-­‐679.
 
 

 
Davis
 M.,
 Shaw
 R.,
 and
 Etterson
 J.
 (2005).
 
 Evolutionary
 responses
 to
 a
 changing
 climate.
 
 
Ecological
 Society
 of
 America
 86
 (7),
 1704-­‐1714.
 
 
 

 
Drake
 S.,
 Weltzin
 J.,
 and
 Parr
 P.
 (2003).
 
 Assessment
 of
 non-­‐native
 invasive
 plant
 species
 on
 the
 
United
 States
 Department
 of
 Energy
 Oak
 Ridge
 National
 Environmental
 Research
 Park.
 
 
Castanea
 68
 (1),
 15-­‐30.
 
 

 


 

 

Page
 
70
 


 

 

Dunn
 P.
 (1998).
 
 Prairie
 Habitat
 Restoration
 and
 Maintenance
 on
 Fort
 Lewis
 and
 within
 the
 
South
 Puget
 Sound
 Prairie
 Landscape.
 
 (Prepared
 for
 the
 United
 States
 Army
 by
 The
 Nature
 
Conservancy
 of
 Washington).
 
 

 
Dunn,
 P
 .
 (2002).
 Integrated
 Control
 of
 Scotch
 Broom:
 Techniques
 and
 Strategies.
 The
 Nature
 
Conservancy.
 

 
Dunwiddie
 P.
 and
 Delvin
 E.
 (2006).
 
 Inadvertent
 selection
 in
 the
 propagation
 of
 native
 plants.
 
 
Native
 Plants
 Journal
 7
 (2),
 121-­‐124.
 
 
 

 
Dunwiddie
 P.,
 Hall
 S.,
 Ingraham
 M.,
 Bakker
 J.,
 Nelson
 K.,
 Fuller
 R.,
 Gray
 E.
 (2009).
 
 Rethinking
 
Conservation
 practice
 in
 Light
 of
 Climate
 Change.
 
 Ecological
 Restoration
 27
 (3),
 320-­‐329.
 
 
 
 
 

 
Falk,
 D.A.,
 Palmer,
 M.A.,
 and
 
 Zedler,
 J.B.
 (2009).
 
 Foundations
 of
 Restoration
 Ecology.
 
 Island
 
Press,
 Washington
 D.C.
 
 

 
Fritzpatrick
 G.
 (2004).
 
 Techniques
 for
 restoring
 native
 plant
 communities
 in
 upland
 and
 
wetland
 prairies
 in
 the
 Midwest
 and
 west
 coast
 regions
 of
 North
 America.
 
 White
 Paper,
 
prepared
 for
 City
 of
 Eugene-­‐Parks
 and
 Open
 Space.
 
 
 
 

 
Gibbs
 G.
 (1877).
 
 Tribes
 of
 western
 Washington
 and
 northwest
 Oregon.
 
 Department
 of
 the
 
interior,
 U.S.
 Geographical
 and
 geological
 survey
 of
 the
 Rocky
 Mountain
 Region.
 

 
 
 
Hansen,
 Henry
 P.
 (1947).
 Climate
 versus
 fire
 and
 soil
 as
 factors
 in
 the
 Puget
 Lowland
 of
 
Washington.
 American
 J.
 of
 Science
 245
 (5),
 265-­‐286.
 

 
Heller
 N.,
 Zavaleta
 E.
 (2008).
 
 Biodiversity
 management
 in
 the
 face
 of
 climate
 change:
 A
 review
 
of
 22
 years
 of
 recommendations.
 
 Biological
 Conservation
 142
 (2009),
 14-­‐32.
 
 
 

 
Hessburg
 P.,
 Agee
 J.,
 Franklin
 J.
 (2005).
 
 Dry
 forest
 and
 wildland
 fires
 of
 the
 inland
 Northwest
 
USA:
 contrasting
 the
 landscape
 ecology
 of
 the
 pre-­‐settlement
 and
 modern
 eras.
 
 Forest
 Ecology
 
and
 Management
 
 211,
 117-­‐139.
 

 
Hibbard
 B.
 (1939).
 
 A
 history
 of
 the
 public
 land
 policies.
 
 P.
 Smith,
 New
 York,
 NY.
 
 
 

 
Hulme
 P.
 (2005).
 
 Adapting
 to
 climate
 change:
 is
 there
 scope
 for
 ecological
 management
 in
 the
 
face
 of
 a
 global
 threat?
 
 Journal
 of
 Applied
 Ecology
 42
 784-­‐794.
 
 
 

 
Iverson
 L.
 and
 Prasad
 A.
 (2001).
 
 Potential
 Changes
 in
 Tree
 Species
 Richness
 and
 forest
 
community
 types
 following
 climate
 change.
 
 Ecosystem
 4
 (3),
 186-­‐199.
 
 
 

 
 
 
IPCC
 (2007):
 Summary
 for
 Policymakers.
 
 Climate
 Change
 2007:
 Mitigation.
 Contribution
 of
 
Working
 Group
 III
 to
 the
 Fourth
 Assessment
 Report
 of
 the
 Intergovernmental
 Panel
 on
 Climate
 
Change.
 
 B.
 Metz,
 O.R.
 Davidson,
 P.R.
 Bosch,
 R.
 Dave,
 l.A.
 Meyer,
 Cambridge
 University
 Press,
 

 

 

Page
 
71
 


 

 

Cambridge,
 United
 Kingdom
 and
 New
 York,
 NY,
 USA.
 
 
 

 
Kruckeberg
 A
 (1991).
 The
 Natural
 History
 of
 Puget
 Sound
 Country.
 
 University
 of
 Washington
 
Press,
 Seattle,
 WA.
 

 
Leopold
 E.
 and
 Boyd
 R.
 (1999).
 
 An
 ecological
 history
 of
 old
 prairie
 areas
 in
 southwestern
 
Washington,
 pp.
 139-­‐163
 in
 Boyd
 R.,
 (ed.).
 Indians,
 fire,
 and
 the
 land
 in
 the
 Pacific
 Northwest.
 
Oregon
 State
 University
 Press,
 Corvallis
 OR.
 

 
Littell
 J.
 (2006).
 
 Climate
 Impacts
 to
 Forest
 Ecosystem
 Processes:
 Douglas-­‐fir
 Growth
 in
 
Northwestern
 U.S.
 Mountain
 Landscapes
 and
 Area
 Burned
 by
 Wildfire
 in
 Western
 U.S.
 
Ecoprovinces.
 
 University
 of
 Washington.
 

 
Littell
 J.,
 Peterson
 D.,
 and
 O’Halloran
 K.
 (2007).
 
 Adaption
 to
 Climate
 Change
 in
 Olympic
 
National
 Forest.
 USDA
 Forest
 Service,
 Olympic
 National
 Forest,
 SAP
 4.4
 Case
 Study
 Section.
 
 
 
 
 

 
Littell,
 J.S.,
 M.
 McGuire
 Elsner,
 L.C.
 Whitely
 Binder,
 and
 A.K.
 Snover
 (eds).
 (2009).
 The
 
Washington
 climate
 change
 impacts
 assessment:
 evaluating
 Washington's
 future
 in
 a
 changing
 
climate
 -­‐
 executive
 summary.
 In
 the
 Washington
 climate
 change
 impacts
 assessment:
 
evaluating
 Washington's
 future
 in
 a
 changing
 climate.
 
 Climate
 Impacts
 Group,
 University
 of
 
Washington,
 Seattle,
 WA.
 

 
Lonsdale
 W.
 (1999).
 
 Global
 patterns
 of
 plant
 invasions
 and
 the
 concept
 of
 invisibility.
 
 Ecology,
 
80
 (5),
 1522-­‐1536.
 
 

 
Loreau,
 M.,
 Naeem
 S.,
 Inchausti
 P.,
 Bengtsson
 J.,
 Grime
 J.P.,
 Hector
 A.,
 Hopper
 D.U.,
 Huston
 
M.A.,
 Raffaellii
 D.,
 Schmid
 B.,
 Tilman
 D.,
 Wardle
 D.A.
 (2001).
 
 Biodiversity
 and
 ecosystem
 
functioning:
 current
 knowledge
 and
 future
 challenges.
 Science
 294
 (5543),
 804-­‐808.
 
 
 

 
Lynch
 M.
 (1991).
 
 The
 genetic
 interpretation
 of
 inbreeding
 depression
 and
 outbreedng
 
depression.
 
 Evolution
 45,
 (3),
 622-­‐629.
 

 
Malcom
 J.,
 Pitelka
 L.
 (2002).
 
 Ecosystems
 and
 Global
 Climate
 Change:
 A
 Review
 of
 Potential
 
Impacts
 on
 U.S.
 Terrestrial
 Ecosystems
 and
 Biodiversity.
 
 Pew
 Center
 on
 Global
 Climate
 Change
 

 
Mack
 R.,
 Simberloff
 D.,
 Lonsdale
 W.,
 Evans
 H.,
 Clout
 M.,
 and
 Bazzaz
 F.
 (2000).
 
 Biotic
 Invasions:
 
Causes,
 Epidemiology,
 Global
 Consequences,
 and
 Control.
 
 Ecological
 applications
 10
 (3),
 689-­‐
710.
 

 
Martin
 P.,
 (1967).
 
 Prehistoric
 overkill.
 Pgs.
 354-­‐404
 in
 Martin
 P.
 and
 Wright
 H.
 Pleistocene
 
extinctions:
 the
 search
 for
 a
 cause.
 
 Yale
 University
 Press,
 New
 Haven,
 CT.
 

 
McLachlan
 J.,
 Hellmann
 J.,
 and
 Schwartz
 M.
 (2007).
 
 A
 framework
 for
 Debate
 of
 Assisted
 
Migration
 in
 an
 Era
 of
 Climate
 Change.
 
 Conservation
 Biology
 21
 (2),
 297-­‐302.
 
 
 

 

 

Page
 
72
 


 

 


 
Mooney
 H.,
 Cleland
 E.
 (2001).
 
 The
 Evolutionary
 Impact
 of
 Invasive
 Species.
 Proceedings
 of
 the
 
National
 Academy
 of
 Sciences
 of
 the
 United
 States
 of
 America
 98(10),
 5446-­‐5451.
 
 
Mote,
 P.
 and
 Salathé
 E.
 (2009).
 Future
 climate
 in
 the
 Pacific
 Northwest.
 Chapter
 1
 in
 The
 
Washington
 Climate
 Change
 Impacts
 Assessment:
 Evaluating
 Washington's
 Future
 in
 a
 
Changing
 Climate.
 Climate
 Impacts
 Group,
 University
 of
 Washington,
 Seattle,
 WA.
 

 
Nabhan
 G.
 (1989).
 
 Enduring
 seeds:
 Native
 American
 agriculture
 and
 wild
 plant
 conservation.
 
 
North
 Point
 Press,
 New
 York,
 NY.
 
 
 

 
Naeem
 S.
 (1998).
 
 Species
 redundancy
 and
 ecosystem
 reliability.
 
 Conservation
 Biology
 12
 (1),
 
39-­‐45.
 
 
 

 
Neilson
 R.,
 Pitelka
 L.,
 Solomon
 A.,
 Nathan
 R.,
 Midgley
 G.,
 Fragoso
 J.,
 Lischke
 H.,
 Thompson
 K.
 
(2005).
 
 Forecasting
 regional
 to
 global
 plant
 migration
 in
 response
 to
 climate
 change.
 
 
Bioscience
 55
 (9),
 749-­‐758.
 
 
 
 
 

 
Noss
 R.
 (2001).
 
 Beyond
 Kyoto:
 Forest
 Management
 in
 a
 Time
 of
 Rapid
 Climate
 Change.
 
 
Conservation
 Biology
 15
 (3),
 578-­‐590
 

 
Norton
 H.
 (1979).
 
 The
 association
 between
 anthropogenic
 prairies
 and
 important
 food
 plants
 in
 
western
 Washington.
 
 The
 Northwest
 anthropological
 research
 notes
 13
 (2),
 175-­‐200.
 
 
 

 
Norton
 H.,
 Boyd
 R.,
 Hunn
 E.
 (1999).
 
 The
 Klikitat
 Trail
 of
 South
 central
 Washington,
 pgs
 65-­‐94
 in
 
Boyd
 R.
 (ed),
 Indians,
 Fire
 
 and
 The
 Land
 in
 The
 Pacific
 Northwest.
 Oregon
 State
 University
 
Press,
 Corvallis
 OR.
 
 
 

 
 
Parker
 I.
 (1997).
 
 Pollinator
 Limitation
 of
 Cytisus
 scoparius
 (Scotch
 Broom),
 an
 Invasive
 Exotic
 
Shrub.
 
 Ecology
 78
 (5),
 1457-­‐1470.
 

 
Parker
 I.,
 Harpole
 W.,
 Dionne
 D.
 (1997).
 
 Plant
 community
 diversity
 and
 the
 invasion
 of
 the
 
exotic
 shrub
 Cytisus
 scoparius
 testing
 hypotheses
 of
 invisibility
 and
 impact.
 Ecology
 and
 
Conservation
 of
 the
 south
 Puget
 Sound
 prairie
 landscape,
 Patrick
 Dunn
 and
 
 
Kern
 Ewing
 (eds.),
 17-­‐28.
 The
 Nature
 Conservancy
 of
 Washington,
 Seattle,
 WA.
 

 
Purcell
 A.
 (1987).
 
 Shaping
 the
 mounded
 landscape
 of
 Thurston
 County,
 Washington.
 
 Evergreen
 
State
 College,
 Graduate
 Program
 in
 Environmental
 Study.
 
 
 

 
Radosevich
 S.,
 Stubbs
 M.,
 and
 Ghersa
 C.
 (2003).
 
 Plant
 invasions:
 process
 and
 patterns.
 
 Weed
 
Science
 51(2),
 254-­‐259.
 
 
 

 
Riccardi
 A.,
 Steiner
 W.,
 Mack
 R.,
 Simberloff
 D.
 (2000).
 
 Toward
 a
 Global
 Information
 System
 for
 
Invasive
 Species.
 
 Bioscience
 50
 (3),
 239-­‐242.
 


 

 

Page
 
73
 


 

 

Rochefort
 R.,
 and
 Peterson
 D.
 (1996).
 
 Temporal
 and
 Spatial
 Distribution
 of
 Trees
 in
 Subalpine
 
Meadows
 of
 Mount
 Rainer
 National
 Park,
 Washington,
 U.S.A.
 
 Arctic
 and
 Alpine
 Research,
 28
 
(1),
 52-­‐59.
 
Rogers
 Brendan
 (2009).
 
 Potential
 impacts
 of
 climate
 change
 on
 Vegetation
 distributions,
 
carbon
 stocks,
 and
 fire
 regimes
 in
 the
 U.S.
 Pacific
 Northwest.
 A
 master
 of
 Science
 thesis
 for
 
Oregon
 State
 University.
 
Rossman
 A.
 (2001).
 
 Global
 Movement
 of
 Invasive
 plants
 and
 Fungi.
 
 Bioscience
 51
 (2),
 93-­‐94.
 
 
 
 

 
Sakai
 A.,
 Allendorf
 F.,
 Holt
 J.,
 Lodge
 D.,
 Molofsky
 J.
 (2001).
 
 The
 Population
 Biology
 of
 Invasive
 
Species.
 
 Annual
 Review
 of
 Ecology
 and
 Systematics
 32,
 305-­‐332.
 

 
Salmun
 H.,
 Molod
 A.
 (2006).
 
 Progress
 in
 modeling
 the
 impact
 of
 land
 cover
 change
 on
 the
 
global
 climate.
 
 Progress
 in
 Physical
 Geography,
 30
 (6),
 737.
 
Salathe
 E.,
 Steed
 R.,
 Mass
 C.,
 Zahn
 P.
 (2008).
 
 A
 high
 resolution
 climate
 model
 for
 the
 United
 
States
 pacific
 Northwest:
 mesoscale
 feedbacks
 and
 local
 responses
 to
 climate
 change.
 
 Journal
 
of
 Climate,
 (in
 press),
 Draft.
 
 
 
 

 
Schuller
 R.
 (1997).
 
 Vegetation
 response
 to
 fall
 prescribed
 burning
 within
 Festuca
 idahoensis
 
dominated
 prairie,
 Mima
 Mounds
 Natural
 Area
 Preserve,
 Washington
 1985-­‐1992.
 Ecology
 and
 
Conservation
 of
 the
 South
 Puget
 Sound
 Prairie
 Landscape,
 Patrick
 Dunn
 and
 Kern
 Ewing
 (eds.),
 
17-­‐28.
 The
 Nature
 Conservancy
 of
 Washington,
 Seattle,
 WA.
 

 
Sheppard
 A.,
 Hodge
 P.,
 Paynter
 Q.,
 Rees
 M.
 (2002).
 
 Factors
 affecting
 invasion
 and
 persistence
 
of
 broom
 Cytisus
 scoparius
 in
 Australia.
 
 Journal
 of
 Applied
 Ecology
 39
 (2002),
 721-­‐734.
 

 
Solomon
 A.M.,
 and
 Kirlenko.
 (1997).
 
 Climate
 Change
 and
 Terrestrial
 Biomass:
 
 What
 if
 Trees
 do
 
not
 migrate?.
 
 Global
 Ecology
 and
 Biogeography
 Letters
 6
 (2),
 139-­‐148.
 
 
 

 
Storm
 L.
 (2004).
 
 Prairie
 fires
 &
 earth
 mounds:
 the
 ethnoecology
 of
 Upper
 Chehalis
 Prairies.
 
 
Douglasia
 28
 (3),
 6-­‐9.
 
 

 
Tilman,
 D.
 (July
 1999).
 The
 ecological
 consequences
 of
 changes
 in
 Biodiversity:
 a
 search
 for
 
general
 principles.
 
 Ecology
 80
 (5)
 1455-­‐1474.
 

 
Vale
 T.
 (2002).
 
 The
 Pre-­‐European
 landscape
 of
 the
 United
 States:
 pristine
 or
 humanized,
 pgs.
 1-­‐
40
 in
 Vale
 T.
 (ed),
 Fire,
 Native
 Peoples
 and
 the
 natural
 landscape.
 
 Island
 Press,
 Washington
 D.C.
 

 
White
 R.
 (1980).
 
 Land
 use,
 Environment,
 and
 Social
 Change:
 The
 shaping
 of
 Island
 Country
 
Washington.
 
 University
 of
 Washington
 Press,
 Seattle,
 WA.
 
 

 


 

 

Page
 
74
 


 

 

Whitlock
 C.,
 Knox
 M.
 (2002).
 
 Prehistoric
 burning
 in
 the
 pacific
 Northwest:
 Human
 versus
 
climatic
 influences,
 pp.195-­‐231
 in
 Vale
 T.
 (ed.).
 
 Fire
 Native
 Peoples
 and
 the
 natural
 landscape.
 
 
Island
 Press,
 Washington
 DC.
 
 
 

 
Woodward
 A.,
 Schreiner
 E.,
 Silsbee
 D.
 (1995).
 
 Movement
 in
 subalpine
 areas
 Climate,
 
Geography,
 and
 Tree
 Establishment
 in
 Subalpine
 Meadows
 of
 the
 Olympic
 Mountains,
 
Washington
 U.S.A.
 
 Arctic
 and
 Alpine
 Research
 27
 (3),
 217-­‐225.
 

 
Websites
 Accessed
 2008-­‐2010
 

 
USDA
 Forest
 Service,
 
 
http://www.fs.fed.us/database/feis/plants/shrub/cytspp/all.html
 

 
Climate
 Impacts
 Group:
 
http://cses.washington.edu/cig/
 

 
National
 Invasive
 Species
 Information
 Center
 (NISIC):
 
http://www.invasivespeciesinfo.gov/whatis.shtml
 

 
Washington
 State
 Noxious
 Weed
 Control
 Board
 
http://www.nwcb.wa.gov/INDEX.htm
 

 
 
Wolf
 Haven
 International
 
http://www.wolfhaven.org/gopher.php
 

 
U.S.
 Fish
 and
 Wildlife,
 Washington
 
 
 
http://www.fws.gov/wafwo/
 

 
South
 Puget
 Sound
 Prairie
 Landscape
 Working
 Group
 
http://www.southsoundprairies.org/
 

 
City of Eugene
http://www.eugene-or.gov


 

 

Page
 
75