Bateman_PMESthesis2011 .pdf

Media

Part of Marine Transportaton and Aquatic Invasive Species: Comparing Hawaii and Washington Policy

extracted text
 
 
 
 
 
 
 
 
 
Marine Transportation and Aquatic Invasive Species:  
Comparing Hawaii and Washington Policy 
 
 
 
 
 
 
 
 
 
 
 
by 
Patricia Hildebrandt Bateman 
 
 
 
 
 
 
 
A Thesis: Essay of Distinction 
Submitted in partial fulfillment 
of the requirements for the degree 
Master of Environmental Studies 
The Evergreen State College 
March 2011 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
©2011 by Patricia Hildebrandt Bateman. All rights reserved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
This Thesis for the Master of Environmental Studies Degree 
by 
Patricia Hildebrandt Bateman 
 
 
Has been approved for 
The Evergreen State College 
By 
 
 
 
 
 
 
 
 
 
Martha L. Henderson, Ph.D. 
Member of the Faculty 
 
 
 
 
 
Date 
 
 
 
 
 
 
 

 

 
 
 
 
 
ABSTRACT 
 
Marine Transportation and Aquatic Invasive Species:  
Hawaii and Washington Policy Comparison  
 
Patricia Hildebrandt Bateman 
 
 
 
Aquatic invasive species have detrimental economic and environmental impacts for 
both the private and public sectors. Research has found that the main vector for the 
transmission of aquatic invasive species is marine transportation, through ballast 
and hull fouling. States have attempted to address the issue of marine 
transportation and invasive species through policies and regulations, however, 
inconsistencies and gaps make successfully combating aquatic invasive species 
nearly impossible. This comparative policy analysis addresses the differences 
between two states, Washington and Hawaii, whose economies include a high 
degree of interstate transportation, yet have varying policies regarding ballast and 
hull fouling. Washington and Hawaii policies have strengths and weaknesses, 
however, have different compliance and success rates. This policy analysis identifies 
similarities and differences between the two states, as well as current national and 
international regulations. Finally, policy improvements are suggested to help reduce 
the transmission of aquatic invasive species to and from both locations, placing an 
emphasis on the importance of consistency when battling a national and 
international issue.  
 
 
 
 

 

 
Contents 
 
1: Introduction 
2: Marine Transportation Components of Concern 
 
2.1: Ballast 
 
2.2: Hull Fouling 
3: Current Management 
 
3.1: Ballast 
 
 
3.1.1: Filtration 
 
 
3.1.2: Open Ocean Exchange 
 
 
3.1.3: Treatment Technologies 
 
3.2: Hull Fouling 
 
 
3.2.1: Anti‐Fouling Coatings 
 
 
3.2.2: Manual Removal 
4: Current Regulations 
 
4.1: State 
 
 
4.1.1: Ballast 
 
 
4.1.2: Hull Fouling 
 
4.2: National 
 
 
4.2.1: Ballast 
 
 
4.2.2: Hull Fouling 
 
4.3: International 
 
 
 
4.3.1: Ballast 
 
 
4.3.2: Hull Fouling 
5: Bi‐state analysis of Current Practices and Regulations 
5.1: Ballast 
5.2: Hull Fouling 
6: Suggested Improvements 
7: Conclusion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  v

 
 
Figures & Images 
 
2.1:   Ballast Loading and Discharge Patterns 
3.1.3:   Treatment Options 
4.1:   Washington and Hawaii Regulations Comparison Chart 
4.2.1:   Exclusive Economic Zones of the United States 
4.3.1:   Treatment Standards Comparison Chart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  vi

Acknowledgments 
I would like to thank the people who have helped and inspired me while working 
towards the completion of my thesis and the Master of Environmental Studies 
degree.  
 
Thank you to my reader and MES director, Martha Henderson, who guided me 
through the thesis process and helped me stay on track. She provided me with 
valuable insights and support.  Thanks are also due to Gail Wootan, the MES 
Assistant Director, who helped keep myself and other students on track when 
working towards the goal of graduation.  
 
Many thanks are also owed to my supportive family and friends. You made sure I 
completed this thesis, and I appreciate the love and support. A special thanks to my 
husband, Matthew, who helped me recognize when I needed to stay focused, and 
who inspires me to want to make the world a better place for our future, and the 
future of those we share this world with.  
 
Thank you.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  vii

1: Introduction 
The transmission of aquatic invasive species due to marine transportation, 
both commercial and private, has become an increasingly important question in 
environmental management over the past decades.  Aquatic invasive species have a 
significant impact on the environment and related ecosystems and ecosystem 
services; however, the transmission of aquatic invasive species is almost entirely 
anthropogenic. The anthropogenic nature of this transmission leads to the need for 
an anthropogenic solution, policy. Policy has been established by several 
governments to address aquatic invasive species and marine transportation, 
however, there is a lack of collaboration.  
Increased international trade and ship transportation has contributed to 
multiplied organism discharge in ports throughout the world, with approximately 
eighty percent of the world’s trade volume transported via ship (National Research 
Council 22), and large vessel capacities in excess of 200,000 m3 of ballast (National 
Research Council 23).  It is estimated that 438 million m3 of wetted surface area, also 
known as the portion of the boat or vessel surface located under water, enters the 
United States yearly (Smithsonian Environmental Research Center 1). Globally, it is 
estimated that more than 100,000 marine species are transported each day via 
ballast (Buck 1). Several preventative measures are currently being studied to help 
prevent the introduction of invasive species, but the United States’ and other global 
shipping leaders’ lack of a comprehensive ballast and hull fouling management plan 
is problematic.  This paper discusses current ballast and hull fouling management 
approaches by comparing Washington and Hawaii policies and makes suggestions 

  1

for improving these policies to help reduce the transmission of Aquatic Invasive 
Species.  
 

Aquatic invasive species, also known as AIS, have both environmental and 

economic impacts for the planet, governments, and private industry.  It is clear that 
aquatic invasions have created changes in food web dynamics, chemical cycling, 
disease outbreaks, and species extinction rates. Invasive species are second only to 
habitat loss in terms of risk to overall global biodiversity (Gramling 8).  The rate of 
known marine invasions in North America has increased exponentially over the past 
two hundred years (Carlton et al 3).  Not only is the number continuing to rise, there 
is also an increase in the variety of species being transported, the types of habitats 
they infest, and the global regions they are impacting.  The Great Lakes have seen 
over sixty new invasive species since 1960 and San Francisco Bay over seventy since 
1970 (Gramling 8).   
Economic impacts of invasive species include fishery losses, drop in tourism, 
damage to municipal water systems, as well as the money spent for eradication of 
invasive species. In 2001, it was estimated that the U.S. alone suffered over $100 
billion per year in economic losses due to invasive species (National Ballast 
Information Clearinghouse 1).  
A prime example of environmental and economic loss due to AIS is the case 
of the zebra mussel and the Great Lakes, which created an impetus for the Invasive 
Species Act. The zebra mussel, an import from the Black Sea, began establishing 
itself in the Great Lakes in 1988.  Since then, the mussel become established north 
to Quebec, south to New Orleans, and as far west as Oklahoma, with small 

  2

infestations as far west as Oregon and Washington. The mussels are inedible to 
most of North America’s indigenous species, consequently allowing their rapid 
proliferation into massive colonies and strangling native ecosystems. The muscle 
clogs industrial and municipal water pipes causing closures to accommodate manual 
removal. The mussels filter out phytoplankton at a high rate, changing entire 
ecosystems they inhabit. It has been estimated zebra mussels cost the United States 
$5 billion each year in economic losses and control efforts (Harder 234).  
While comparing AIS policies for Washington and Hawaii may not seem 
intuitive due to differing climates, comparing the two states offers an excellent 
opportunity to examine how marine transport in different environments can result 
in dispersal and establishment of aquatic invasive species. The two states have 
economies that rely heavily on marine transportation, experiencing approximately 
500 direct cargo interactions annually (Kaluza et al, 2172), resulting in high exposure 
to AIS, and reinforce the need for stringent and comprehensive policies regardless of 
origination and destination of travel.   
Current research in the area of marine transportation, ballast, and hull 
fouling and the resulting invasive species infestations has not created a cohesive or 
thorough body of knowledge.  It is widely accepted and supported that commercial 
trade results in rising annual and cumulative rates of invasion (Meyerson & Mooney 
200). Current research focuses mainly on localized infestations, usually evaluating 
the situation on a local scale, rarely focusing on a nation wide or global scale. 
Detailed quantitative research has been limited and focused on invasion patterns 
rather than the impacts of the invasions (Meyerson & Mooney 202). However, 

  3

multiple efforts have been made to address increased concerns in regards to 
globalization, invasive species, and biodiversity threats.    
 

Comparative policy analysis is lacking in current literature. The most 

comprehensive comparisons available have been located in presentation notes and 
conference proceedings, such as Jason Savarese’s presentation at the 14th Biennial 
Coastal Zone Conference, entitled “Preventing and managing hull fouling: 
international, federal, and state laws and policies.”  Due to the lack of 
comprehensive comparisons, it is difficult to establish current comparison 
methodology, resulting in an increased need to provide a comprehensive source of 
current regulations impacting Washington and Hawaii prior to providing a specific 
comparison.  Comparative analysis of current regulations will allow Washington and 
Hawaii, as well as surrounding states, to make educated decisions about 
comprehensive and effective policies, and help them to identify areas in which they 
can improve and collaborate.  This thesis works to identify the similarities and 
differences, as well as suggest possible improvements to current policies.  
 
2:  Marine Transportation Components of Concern 
In order to understand the relevance of aquatic invasive species and marine 
transportation, it is important to understand the different components of marine 
transportation that are integral in the transmission of invasive species. The main 
areas of concern are ballast and hull fouling. These two causes are defined here:  
 
 

  4

2.1: Ballast 
Ballast is any solid or liquid placed in a ship to increase the depth of 
submergence of the vessel in the water, to change the trim, to regulate stability, or 
to maintain stress loads within acceptable limits. It may also be brought on board to 
compensate for drinking water or fuel consumption (Carlton et al 3) and may be sea 
water, fresh water, or suspended or settled sediments (National Research Council 
vii).  Ballast is taken on at one port when the cargo is off‐loaded by the vessel, and is 
usually discharged at another port when cargo is received, as seen in image 2.1 
(Center for Coastal Resources 1).   
 
Image 2.1: Ballast loading and discharge patterns.  

 

 

 
 Image courtesy of the International Maritime Organization 

  5

 
Vessels take on ballast usually by pump or gravitation. On a vessel, intakes 
are located several meters below the water line, and are protected by a grate or 
strainer, equipped with openings between 1.0 and 1.5 cm in diameter (Gramling 6). 
Ballast tank configuration varies greatly from vessel to vessel, and may consist of 
several small tanks, or one large tank (National Research Council 25).  When ballast 
water is brought on board a vessel, suspended sediment will settle to the bottom of 
the tank, and will likely not be discharged during the ballast water disposal or 
exchange. Settled sediments are also of concern in reference to AIS transmission, as 
resulting sediments from the tanks and holds of vessels are removed only on an 
intermittent basis through a variety of methods, either in‐water or on shore.  Prior 
to removal from the vessel they can create a viable substrate for organisms brought 
on board via ballast water, and result in a high level of organism survival and 
reproduction. 
Ballast water that is brought on board a vessel when it is not carrying cargo 
contains organisms living in the surrounding waters and sediments, ranging in size 
from microscopic viruses to twelve inch fish (Globallast 2002, 1).  The size of 
surviving organisms varies depending on the uptake method, which can be 
gravitational or pump fed. Larger organisms tend to survive when gravitation is used 
exclusively to take on ballast, while larger organisms will die when passing through 
the pumping mechanisms (Carlton et al 5). Surviving organisms have the potential to 
become AIS (also referred to as bio‐invaders, non‐native species, alien species, or 
exotic species) in the port of ballast discharge.  Research has shown that commercial 

  6

shipping may account for up to eighty percent of aquatic invasive species in coastal 
habitats. Up to 300 species have been identified in the ballast water of a single 
container ship (Dobroski 6). These include bacteria, microbes, small invertebrates, 
and the eggs, cysts, and larvae of various species. The problem of AIS transmission in 
ballast water is only compounded by the fact that virtually all marine species have 
life cycles that include at least one planktonic state (Globallast 2002, 2) meaning 
species which are normally thought of as anchored can still be transmitted.  Varying 
species and density of AIS are currently found worldwide.  Widespread AIS include 
the North American Comb Jelly, the North Pacific Seastar, the Zebra Mussel, Asian 
Kelp, the European Green Crab, and the Mitten Crab (Globallast 2008, 1).  
 
2.2: Hull Fouling  
Hull fouling is the settlement and accumulation of microorganisms, plants, 
algae, and animals on the underwater surface of a vessel or platform. Fouling 
organisms are organisms that attach to submerged hard surfaces, both natural and 
manmade. Fouling organisms include species such as mussels, seaweed, sea squirts, 
and anenomes, as well as the associated organisms that may live on these species‐ 
such as bryozoans, crabs, shrimp, and sea snails. The above listed organisms can 
create a fouling community that lives on the vessel and travels with it from port to 
port, allowing for the introduction of new AIS (Fofonoff).  
There are many factors that relate to the dispersal of AIS and hull fouling. 
Factors that influence whether a vessel can successfully transfer AIS include vessel 
speed, harbor residence time, voyage duration, surface area and complexity of 

  7

vessel, and the period of time since the vessel was last painted. Vessel areas that do 
not experience wave action due to speed, such as  the anchor and anchor chain, as 
well as the sea chest and propeller, also tend to accumulate fouling communities at 
a higher frequency than those that are exposed to higher wave action. Studies have 
documented extensive fouling communities particularly on towed vessels and 
recreational vessels (Takata, Falkner, and Gilmore). In Hawaii, it is believed that 
fouling is responsible for more successful marine introductions than any other 
vector, accounting for approximately seventy‐four percent of all AIS introductions 
(Godwin). For North America, a study estimates that at least thirty‐six percent of AIS 
introduced via maritime transportation was done via fouling (Fofonoff et al).  
 
3:  Current Management 
Management of AIS by ballast and hull fouling can be split into two main 
approaches: technical control and regulatory control.  Both play important roles in 
preventing AIS transmission, and it is important to understand technical control in 
order to be able to craft realistic policies and regulations.  
3.1: Ballast technical control 
 

Ballast water management (BWM) is a complicated issue with several 

components. Ballast water management refers to the techniques used to remove 
AIS from ballast.  In order to establish a better understanding of BWM, the following 
sections will discuss currently used techniques for removal of AIS and techniques 
currently being tested. 
 

  8

3.1.1: Intake and Discharge Filtration 
 

Ballast water can be filtered before it enters the vessel, or filtered during 

discharge.  Filtering during intake is considered preferential because it allows the 
organisms which have been removed to remain within their native habitat, while 
organisms filtered out during discharge have to be disposed of properly so they do 
not accidently contaminate the environment (Tang 412).  Currently, filtration is 
occurring on a basic level during most ballast intake procedures. As was stated 
previously, the majority of vessels have a screen or grate on the ballast intake, in 
order to prevent the intake of any large organisms.  Standard intake screens filter to 
the 1.0 to 1.5 cm level, which still allows for contamination by a multitude of 
organisms, including viruses and bacteria (Gramling 6).  According to Congelosi et al 
(547), the decrease in opening size to 25 to 50 micrograms leads to effective 
removal of biological matter, including macro and micro‐zooplankton.   
 
3.1.2: Open‐ocean ballast water exchange 
Open‐ocean ballast water exchange is currently the most common method 
of ballast treatment occurring worldwide. It is also the recommended method for 
the reduction in risk of introduction of AIS (Globallast 2008).  Ballast water exchange 
works in the following pattern:  the vessel takes in ballast at port, travels to a certain 
offshore distance (at least 200 nautical miles) and depth (at least 2,000 meters) and 
exchanges the ballast in tank for open‐ocean water (Globallast 2008).  Depending on 
trip length, this exchange can occur only once, or many times (Gramling 6).  Open‐
ocean water is then released at the arrival port.   

  9

Exchange is effective for two main reasons: (1) the majority of organisms 
taken in by ballasting are suited to the brackish water often found in near‐shore 
locations, and not to the higher salinity water of the open ocean, and vice versa. 
Releasing open‐ocean organisms into the brackish near‐shore water often results in 
a high death rate, as does releasing near‐shore organisms into the open‐ocean 
water (Globallast 2008), (2) The density of organisms living in near‐shore waters is 
significantly greater than the density of organisms in the open‐ocean. Releasing 
open‐ocean water at near‐shore locations results in an overall drop in number of 
organisms released (Smithsonian Environmental Research Center).  Offshore 
distance and depth of ballast exchange also helps to ensure the effectiveness of 
ballast exchange, due to a decrease in species density with increased depth 
(National Research Council 37).   
 

There are two types of ballast water exchange: (1) Flow‐Through and (2) 

Sequential.  The choice of exchange method is dependent on the ballast tank 
configuration of an individual vessel (Prince Williams Sound Fact Sheet 6).  Flow‐
through exchange involves pumping open ocean water into a full ballast tank for a 
length of time sufficient to flush the ballast water tank. Sequential is used on vessels 
with multiple ballast chambers, and involves completely emptying segregated 
ballast tanks, individually or in sequence, and then refilling them with open ocean 
water (Prince William Sound Fact Sheet 7). 
 
 
 

  10

3.1.3: Possible Ballast Treatment Technologies 
 

Ballast water treatment can take place during different stages of the ballast 

process.  These treatments may be either port‐based or shipboard, and can take 
place at various stages in the vessel’s journey.  There are three main shipboard 
treatment areas being researched and tested, and a fourth area being explored in 
port‐based facilities.  
Port‐based treatment involves having a facility at each port equipped with the 
ability to either fill ballast tanks with previously treated water or to de‐ballast tanks into 
land based treatment plant (Puget Sound Action Team 36).  Shipboard treatments 
include mechanical options, such as filtration, de‐oxygenation, ozonation, and cyclonic 
separation. Chemical use of biocides, chlorine, hydrogen peroxide, and sodium are also 
being tested at this time. Finally, the use of heat and electricity‐ such as UV radiation, 
magnetic, electrolysis, and ultrasonic – are also being tested (National Research Council 
53‐55).  

Image 3.1.3: Treatment Options 

Image courtesy of Puget Sound Action Team 
  11

There are varying degrees of success with these methods, but with the technologies 
available at this time, it is currently considered likely that a combination of 
treatment techniques will need to be utilized in order to meet desired organism 
discharge standards (National Research Council 60).  The lack of a universal 
treatment standard, which will be discussed in the next section on regulations, has 
also created an inability to successfully develop technologies, as an ultimate goal is 
not known at this point (U.S. Coast Guard 2004, 3).  
There are several considerations to be included when evaluating ballast 
treatment techniques, beyond the ability to remove AIS. Such considerations are: 
environmental impact (such as discharge of chemicals), safety, implementation cost, 
and loss of transit time (National Research Council 57).  The cost of implementation 
is especially limiting when new treatment techniques need to be tested at the full 
scale level (Globallast 2008).  Currently, very few vessels have full scale shipboard 
testing occurring.  
 
3.2: Hull fouling technical control 
 

Hull fouling is controlled through the use of two common methods: anti‐

fouling paint or manual removal. Both methods are discussed below.  
 
3.2.1: Anti‐fouling paint 
 

Due to the fact that fouling can be detrimental economically to the shipping 

industry, preventing fouling for the purpose of vessel maintenance and efficiency 
has been of high importance for many decades. Anti‐fouling compounds have 

  12

included arsenic, lime, mercury, and pesticides (Lewis). Currently, the most 
commonly used technique to prevent hull fouling is the use of biocidal paint, which 
slowly release tributyltin (TBT), an organotin based chemical. By the mid 1970’s 
most oceangoing vessels had TBT based anti‐fouling paint, as the compound was 
found to be highly effective at keeping the hull clean. However, studies have shown 
that TBT may have significant environmental impacts. These studies indicate that 
the slow release of TBT to the vessel hull also results in the slow release of the 
chemical to the water column sediments, and has been linked to shell deformation 
in oysters, reduced infection resistance in fish, and is a bioaccumulate in the food 
chain (Nehring 343).  
 

As a result of these findings, many countries have implemented rules and 

regulations restricting the use of TBT based anti‐fouling paint. Due to these 
restrictions there has been an increased use of Copper and Zinc based paints for 
anti‐fouling, however, several countries and states, including Washington, have 
regulations limiting the use of such products. Currently the only viable, 
environmentally friendly fouling prevention option is the use of silicon‐based 
coatings that result in the vessel hull being too slippery for organisms to adhere, 
however, this process is not cost effective at this point in time (Takata, Falkner, and 
Gilmore 4).  
 
3.2.2: Manual Removal 

 

In addition to biocidal paints, hull fouling is controlled by the regular manual 
removal of organisms from the vessel. Vessels are cleaned during any period of dry 

  13

dock, but also may be cleaned while still in water.  In‐water cleaning has become a 
topic of concern for multiple reasons. First is that in‐water cleaning may result in an 
increased sloughing of TBT based paints, increasing water pollution issues. Second is 
the concern that fouling organisms which are being manually removed are still 
viable in the environment they are being disposed in. Studies have shown that 
upwards of seventy percent of organisms removed from hulls are still viable in the 
port where they are removed, which likely is not their port of origination. Due to this 
issue, in‐water cleaning may be resulting in increased AIS dispersal rates (Takata, 
Falkner, and Gilmore 14).  In addition, hull scraping can leave remnants of the 
fouling organisms, such as shells or tissues, which in some fouling species act as a 
signal for unattached organisms in the water column to settle (Railkin 256).  
 
4: Current Regulations 
There are several regulations that impact ballast and hull fouling practices.  
The problem of AIS transport via ballast and hull fouling is not just a local problem, 
so many state, federal, and international laws have been implemented which impact 
practices. While this paper is primarily concerned with Washington and Hawaii, it is 
important to understand that maritime travel is international, and international, 
national, and state policies have various impacts.  
 
4.1: State 
Washington and Hawaii have greatly varying climates and oceanic 
environments. Washington’s outer coast lines as well as the Puget Sound region are 

  14

classified as temperate cold, with an average nearshore water temperature ranging 
from 44 degrees Fahrenheit in winter months to 56 degrees Fahrenheit in the 
summer months (NOAA).  Washington has 3,026 miles of tidal shoreline, and is 
home to multiple active ports (NOAA).  
Hawaiian waters are classified as tropical, with nearshore water 
temperatures ranging from 71 degrees Fahrenheit during winter months to 80 
degrees Fahrenheit in the summer (NOAA). Hawaii consists of eight major islands, 
four of which (Hawaii, Oahu, Maui, and Kauai) are large enough to house 
commercial ports, that come together to create what is known as the Hawaiian 
archipelago.  According to NOAA tidal shoreline calculations, Hawaii has 1,052 miles 
of tidal shoreline.  
The Hawaiian archipelago is about 4,000 km from the nearest continent, 
making it the most isolated group of oceanic islands in the world. It also possesses 
one of the most highly endemic and endangered biotas on earth, and is home to 
approximately 40% of the threatened and endangered species in the United States. 
Hawaii is also a major transportation hub and tourist destination. The remote 
location, highly sensitive environment, and status as a transportation and tourist 
destination make it exceptionally susceptible to AIS from marine transportation. 
According to the Hawaii Biological Survey by the Bishop Museum, Hawaii is home to 
343 total aquatic invasive species, 287 invertebrates, 24 microalgae, 12 flowering 
plants, and 20 fish. Of these 343 total species 251 are a direct result of marine 
transportation, either through ballast water, solid ballast, or hull fouling.  
 

  15

4.1.1: State Ballast 
Currently, the legislatures in the states of California, Hawaii, Maryland, 
Michigan, Oregon, Virginia, and Washington have enacted laws addressing ballast 
water discharge. California, Hawaii , Michigan, and Washington have laws more 
stringent than those laid out in the National Invasive Species Act (NISA), while others 
do not significantly differ from NISA (American Association of Port Authorities 2). 
This paper is concerned specifically with the policies of Washington and Hawaii, and 
details of both follow.  
Washington has enacted RCW (Revised Code of Washington) 77.120, the 
Ballast Water Control Act. This RCW specifies that discharge of ballast water is only 
permitted in Washington State with authorized permission, if an open ocean 
exchange has occurred, any alternate treatment methods on board have been 
previously approved, or that have ballast on board that originated within the waters 
of Washington, the Columbia river system, or the internal waters of British Columbia 
south of latitude fifty degrees north.   
In order to enforce RCW  77.120, there is WAC (Washington Administrative 
Code) 220‐150, which is the Ballast Water Discharge Standard and Treatment 
System Approval Process. The WAC states that vessels that have not adequately 
exchanged their ballast as required by RCW 77.120 must treat their ballast to meet 
or exceed the state discharge standards, however, those standards have not been 
set and the proposed standards are currently withheld from WAC records. WAC 220‐
150 states that vessels must report ballast water management information and 
plans to discharge at least twenty‐four hours prior to entering Washington waters 

  16

by submitting a ballast water reporting form, either the International Maritime 
Organization or United State Coast Guard version, electronically transmitted to 
Washington State Fish and Wildlife.  
If vessels do not meet the above standards by filing a ballast water reporting 
form, retaining ballast water, exchanging ballast water, or treating water, they may 
be fined up to $27,500 a day for each violation (Washington State Department of 
Fish and Wildlife). Washington does allow for safety exemptions from the above 
rules, however, a $500 safety exemption filing fee is assessed to cover 
administrative costs to assess compliance.  
In 2001, Hawaii state legislature designated the Department of Land and 
Natural Resources to be the lead agency in preventing the introductions of AIS 
through the regulation of ballast water discharges and hull fouling via Hawaii 
Revised Statues Chapter 187A‐31.  After this designation, the Department of Land 
and Natural Resources created Hawaii’s Ballast Water and Hull Fouling Alien Aquatic 
Organism Prevention Program.  This prevention program was broken into two 
phases, phase I relating to ballast water, and phase II relating to hull fouling. Phase I 
sets forth proposed administrative rules, many of which were incorporated into 
Department of Land and Natural Resources Chapter 13‐76, explained below. The 
suggestions of this plan included: requiring a mandatory ballast management plan 
on board all vessels entering state waters, required mid‐ocean ballast water 
exchange with required reporting to the Department of Land and Natural Resources 
48 hours prior to entering state marine waters, and required ballast water sediment 
management plan on board all vessels entering state waters. 

  17

Hawaii’s current ballast water practices are laid forth in Hawaiian 
Administrative Rules, Department of Land and Natural Resources Chapter 13‐76. 
This administrative rule was put into place in August of 2007, and strengthened 
Hawaii’s previously weak policy on ballast water management. Chapter 13‐76 
requires that all vessels have a ballast water management plan on board, as is also 
required by the United States Coast Guard. Hawaii also requires a complete ballast 
water exchange outside of the Exclusive Economic Zone (200 nautical miles off 
shore), and must submit a ballast water reporting form to the Department of Land 
and Natural Resources and the United States Coast Guard, following Coast Guard 
standards, at least 24 hours prior to arrival within Hawaiian waters. This reporting 
can be done electronically or via fax, and the reporting form must be kept on board 
for two years.  Chapter 13‐76 clearly states that is it unlawful for the vessel master 
to prevent, hinder, or interfere with the Department of Land and Natural Resources 
or the United State Coast Guard’s evaluation of the vessel’s compliance to any of the 
above mentioned requirements.  
Vessels are exempt from the ballast water exchange requirements in Hawaii 
if there is a safety risk associated with completing an exchange, if they have a United 
States Coast Guard approved water treatment system on board, if it is a vessel of 
the United States Coast Guard or the Department of Defense, or if the vessel is 
discharging water in the port of origin of the ballast.  
 
 
 

  18

4.1.2: State Hull 
Washington State does not have any laws or regulations related to preventing AIS 
via hull fouling. However, Washington does have regulations relating to anti‐fouling 
paints and boat cleaning processes related to removing fouling organisms. 
Washington regulations, explained below, are water quality based and aim to 
prevent the release of toxic chemicals into the environment, but have an impact on 
AIS transmittal as well.  
 

RCW 90.48.080 states that it is illegal for “any person to throw, drain, run, or 

otherwise discharge into any of the waters of this state, or to cause, permit or suffer 
to be thrown, run drained, allowed to seep or otherwise discharged into such waters 
any organic or inorganic matter that shall cause or tend to cause pollution of such 
waters”. Washington State has interpreted this to mean it is illegal to perform 
underwater cleaning of hulls that have ablative (soft and toxic) paints, and the 
related fine can be up to $10,000.  Washington also asks vessels to rinse visible 
organisms from anchors and anchor chains prior to entering Washington State 
waters; however, this is not an enforced activity.  
 

Hawaii does not have any current laws or regulations related to hull fouling, 

either for AIS or water quality reasons. The previously mentioned Ballast Water and 
Hull Fouling Alien Aquatic Organism Prevention Program, phase II, was designed 
with hopes of making policy suggestions aimed at hull fouling. Phase II of the 
prevention program was not completed, and the Department of Land and Natural 
Resources of Hawaii has stated that budget restrictions are the main obstacle 
preventing further development and enforcement of hull fouling regulations 

  19

(Showalter 10). Hawaii does house some of the most advanced and up‐to‐date 
research on hull fouling, funded by the Bernice Pauahi Bishop Museum in 
conjunction with the University of Hawaii. The advanced knowledge Hawaii has 
about their hull fouling situation and resulting AIS infestations lends itself well to 
making thorough policy decisions.   
 

Both ballast and hull fouling regulations for Washington and Hawaii are 

summarized in Figure 4.1, allowing for quick comparison of the two states.  
Figure 4.1:  Washington and Hawaii Regulation Comparison Chart 
Area 
Reporting Requirements 
(Ballast) 
Exchange Requirements 
(Ballast) 

Discharge Standards 
(Ballast) 

Exemptions (Ballast) 
Paint  (Hull) 

Cleaning (Hull) 

Washington 
Hawaii 
24 hours prior to entering  24 hours prior to entering 
Washingtonian waters. 
Hawaiian waters. 
Open Ocean exchange 
Open‐ocean exchange 
required, outside of EEZ,  required, outside of EEZ, 
except when coming from  except for vessels 
Washington, the Columbia  conducting interisland 
river system, or the 
travel only.  
internal waters of British 
Columbia.  
Previously proposed 
No state discharge 
Washington goals: 
standards, no proposed 
Technology to inactivate or discharge standards. 
remove 95% of 
zooplankton & 99% of 
bacteria and 
phytoplankton 
Safety, military, treatment  Safety, military, treatment 
system on board 
system on board 
Copper discharge limits 
No regulations 
from dry‐docks‐ 
established in permitting 
process 
No in‐water cleaning,  
No regulations 
Vessels asked to rinse 
visible organisms from 
anchors and anchor chains

 

  20

4.2: National Regulations 
National regulations impact state regulations for many reasons. In the case 
of ballast water and hull fouling, it is written that state regulations must meet or 
exceed national regulations. Below are the minimum requirements for Washington 
and Hawaii and laid forth by national policy.  
 
 4.2.1: National Ballast 
The first attempt to control AIS in the United States was the Nonindigenous 
Aquatic Nuisance Prevention and Control Act of 1990, referred to as NANPCA, which 
established a federal program to prevent the introduction and control the spread of 
unintentionally introduced AIS. The creation of NANPCA was brought on by the 
destruction seen in the Great Lakes by the Zebra Mussel. The responsibilities of 
implementing NANPCA were spread among the U.S. Coast Guard, the EPA, U.S. Fish 
and Wildlife Services, Army Corps of Engineers, and NOAA, who worked together to 
form the Aquatic Nuisance Species Task Force (Buck 4).  The task force is responsible 
for conducting studies and reporting to Congress in order to (1) identify areas where 
ballast water exchange can take place without causing environmental damage, and 
(2) determining the need for controls on vessels entering U.S. waters other than the 
Great Lakes (NANPCA).  Under this act, the Coast Guard is also responsible for 
developing and implementing a ballast water management program to prevent the 
unintentional introduction and dispersal of AIS. NANPCA also encouraged the 
Secretary of Transportation (later changed to the Secretary of Homeland Security) to 

  21

negotiate with foreign countries, through the International Maritime Organization, 
in order to establish similar international prevention and control goals (Buck 4).  
The National Invasive Species Act of 1996, referred to as NISA, reauthorized and 
amended the NANPCA (Buck 4).   NISA created a national ballast water management 
program modeled after the Great Lakes program, wherein all ships entering U.S. 
waters (only after operating outside of the U.S Exclusive Economic Zone, see image 
4.2.1), are directed to undertake mid‐ocean ballast exchange or alternative 
measures pre‐approved by the U.S Coast Guard.  
 
Image 4.2.1: Exclusive Economic Zones of the United States 

 
Image courtesy of NOAA 
The Coast Guard is not required to enforce exchange or treatment on a ship‐to‐
ship basis based on NISA, but was instead asked to study the compliance rates on a 
voluntary basis (Buck 5). Compliance rates are currently measured by the National 

  22

Ballast Information Clearinghouse, which was developed jointly by the Coast Guard 
and the Smithsonian Environmental Research Center.  Following the first three years 
of compliance studies, if non‐compliance rates were significant, the exchange or 
treatment program was to become mandatory (NISA).  
 

NISA created a Ballast Water Demonstration Program, established to 

promote research and development of ballast water treatment technologies to be 
used as an alternative to exchange. NISA also required the Coast Guard to study and 
report to Congress on the effectiveness of currently used port‐based treatment 
facilities found in Alaska, in addition to completing studies on the impacts of AIS in 
Lake Champlain, Chesapeake Bay, San Francisco, Honolulu Harbor, and the Columbia 
River System. Like NANPCA, NISA also encouraged negotiations with international 
governments in order to establish similar goals and regulations (NISA).  
 

As was previously noted, NISA required the establishment of a Ballast Water 

Demonstration Program, which came to fruition as the Coast Guard STEP Program, 
which is a Shipboard Technology Evaluation Program that aims to promote research 
and development of new technologies.  STEP facilitates the installation of 
experimental technologies on both foreign and domestic vessels.  Regulatory 
incentives would grant conditional equivalencies for participatory vessels that might 
not meet discharge standards if they were to become mandated by future 
regulations (U.S. Coast Guard 2001, 7). 
 
 
 

  23

4.2.2: National Hull 
On the federal level, the U.S. Coast Guard is the agency responsible for 
addressing hull fouling.  The Coast Guard has always addressed hull fouling via 
yearly vessel inspections, but the federal mandatory ballast water program 
mentioned above directs vessel owners to remove fouling organisms. The program 
states that “Masters, owners, operators, or persons‐in‐charge of all vessels 
equipped with ballast water tanks that operate in the waters of the U.S. must do the 
following: Rinse anchors and anchor chains when you retrieve the anchor to remove 
organisms and sediments at their place of origin, and remove fouling organisms 
from hull, piping, and tanks on a regular basis and dispose of any removed 
substances in accordance with local, state, and federal regulations (Showalter 3). 
 
4.3: International Regulations 
International shipping regulations are designed and enforced by the 
International Maritime Organization. The International Maritime Organization, 
commonly known as the IMO, is a specialized agency of the United Nations with 167 
member states, and is based in the United Kingdom. The IMO’s main task is to 
develop and maintain a comprehensive regulatory framework for shipping, and 
includes safety, environmental concerns, legal matters, technical co‐operation, 
maritime security, and the efficiency of shipping (IMO 2008).  
The IMO conventions discussed below are not ratified by the United States, 
and therefore do not regulate activities within Washington and Hawaii. However, 

  24

states often refer to these conventions as the ultimate goal when drafting their own 
policies.  
 
4.3.1: International Ballast 
 

After fourteen years of negotiations, the International Maritime 

Organization adopted the International Convention for the Control and 
Management of Ship’s Ballast Water and Sediments on February 13th 2004.   
 

The International Convention for the Control and Management of Ship’s 

Ballast Water (hereafter the BWM Convention), includes 22 articles which provide 
the following information: 


Member states have the right to take more stringent measures for 
protection then laid out in the BWM Convention, but should ensure more 
stringent standards do not cause greater harm than they prevent to their 
environment, human health, property or resources, or those of other states.  



Member states are to ensure that ports and terminals where cleaning or 
repair of ballast tanks occurs have adequate reception facilities for 
sediments.  



States should work to promote and facilitate scientific and technical 
research on ballast water treatment technologies.  



Vessels are required to have on board and implement a Ballast Water 
Management Plan approved by the regulating administration, which must 
include a detailed description of actions to be taken to implement the 
management plan requirements.  

  25



Vessels must have on board a Ballast Water Record Book, which records 
when ballast water is taken on board, circulated or treated for BWW 
purposes, and when it is released to sea. This record book must remain on 
board for two years after final date recorded.  



Vessels are required to be surveyed and certified, and may be inspected at 
anytime to verify that the ship has a valid certificate, to sample ballast 
water, or to inspect the vessel’s ballast water record book.  



States should provide technical assistance to train personnel; ensure the 
availability of relevant technology, equipment and facilities; and other 
actions aimed at the effective implementation of the Convention.  

The BWM Convention also lays out specific discharge and treatment standards, 
known as the Ballast Water Performance Standards.  These standards are laid in 
image 4.3.1, in comparison with United States Coast Guard Standards.   
 
Image 4.3.1: Treatment Standard Comparison Chart 
 
Standard 
1) Organisms greater than 
50 microns in dimension 

IMO Regulations 
Discharge Standards 
<10 viable organisms per 
cubic meter 

2) Organisms 10‐50 
microns in minimum 
dimension 
3) Organisms less than 10 
microns in dimension 
4) E. Coli 
5) Intestinal Enterococci 
6)Toxigenic Vibrio 
cholerae 

<10 viable organisms per 
ml 

NISA Regulations 
Exchange Standards 
USCG will propose 
numeric discharge and 
treatment standards at a 
future time 
No Standards 

No Standards 

No Standards 

<250 cfu/100 ml 
<100 cfu/100 ml 
<1 cfu/100 ml 
 

No Standards 
No Standards 
No Standards 

  26

 
According to the BWM Convention, the above requirements and standards 
will enter into force 12 months after ratification by 30 States, representing 35% of 
world merchant shipping tonnage. As of January 28, 2011 28 countries (Albania,  
Antigua and Barbuda, Barbados, Brazil, Canada, Cook Islands, Cote d’Ivoire, Croatia, 
Egypt, France, Kenya, Kiribati, Liberia, Malaysia, Maldives, Marshall Islands, Mexico, 
Netherlands, Nigeria, Norway, Republic of Korea, Saint Kitts and Nevis, Sierra Leone, 
South Africa, Spain, Sweden, Syrian Arab Republic, and Tuvalu) have ratified the 
Convention, representing only 25.32% of world merchant shipping tonnage (IMO 
2011).  While the U.S. played a large part in setting the BWM Convention standards, 
they have yet to ratify the Convention.  
 
4.3.2:  International Hull 
Similar to Washington, there are currently no international regulations 
related to controlling the spread of AIS via hull fouling, but there are regulations 
related to anti‐fouling paints.  The International Maritime Organization International 
Convention on the Control of Harmful Anti‐fouling Systems on Ships was adopted 
October 5, 2001 and entered into force on September 17th, 2008. The Convention 
states that parties to the convention are required to prohibit and/or restrict the use 
of harmful anti‐fouling systems on ships flying their flag, as well as ships not entitled 
to fly their flag but operate under their authority and all ships that enter a port, 
shipyard or offshore terminal of the signed party.  The Convention also states that 
all ships shall not apply or reapply organotin compounds which act as biocides, and 

  27

by the effective date of the Convention ships either shall not bear such compounds 
on their hulls or shall bear a coating that forms a barrier preventing compound 
leaching.  
As of January 28, 2011 47 countries (Antiqua and Barbuda, Bahamas, 
Belgium, Bulgaria, Canada, Cook Islands, Cote d’Ivoire, Cyprus, Denmark, Estonia, 
Ethiopia, Finland, France, Germany, Greece, Hungary, Iceland, Japan, Jordan, 
Kiribati, Latvia, Lebanon, Liberia, Lithuania, Luxembourg, Malaysia, Malta, Marshall 
Islands, Mexico, Morocco, Netherlands, Nigeria, Panama, Poland, Republic of Korea, 
Republic of Moldova, Saint Kitts and Nevis, Serbia, Sierra Leone, Singapore, Slovenia, 
Spain, Sweden, Syrian Arab Republic, Tuvalu, United Kingdom, and Vanuatu)  have 
signed the IMO Convention on the Control of Harmful Anti‐Fouling Systems on 
Ships, representing 75.29%  of the world’s shipping tonnage. (IMO 2011). The United 
States has not ratified this convention and does not abide by the requirements.  
 
5. Bi‐State Analysis of Current Practices and Regulations 
Climate differences, as described in the section on state regulations, often 
indicate that aquatic invasive species would not be able to thrive in both 
Washington and Hawaii. However, a lack of consistent policies and regulations in 
Washington and Hawaii has directly resulted in overlapping AIS concerns. 
One direct example of the AIS connection between Washington and Hawaii 
is the recorded introduction of the blue mussel, also known as the Mediterranean 
mussel (Mytilus galloprovincialis). Blue mussels were observed on the hull of the 
U.S.S. Missouri, which was towed to Pearl Harbor, Oahu, Hawaii from Puget Sound 

  28

Naval Shipyard in Bremerton, Washington. Blue mussels, considered AIS in Hawaii 
and Washington, were observed spawning on their arrival in Honolulu, and juveniles 
were observed and identified three months later (Godwin, Eldredge, & Gaut 5).  
Other examples of AIS that have been established in both Washington and 
Hawaii through either ballast or hull fouling are Sargassum muticum, Schizoporella 
errata, and Schizoporella unicornis. Sargassum muticum, commonly referred to as 
Sargassum, is a large brown seaweed. It grows attached to rocks, with a maximum 
of 5 cm holdfast, and an additional 5 cm of height. These are the maximum growth 
specs for Washington State, however, in warmer waters off the coast of Hawaii it 
has been known to grow to up to 12 meters in length. Sargassum has negative 
impacts both economically and environmentally, and can clog waterways, 
preventing marine transit and recreational activities. It can also clog intake pipes, as 
well as choke out local species. Schizoporella errata and Schizoporella unicornuis are 
fouling bryozoans, and are of concern in both Washington and Hawaii as they out‐
compete natives for space and food (Global Invasive Species Database).   
Washington and Hawaii have also identified their environment as 
susceptible to the establishment of Carcinus maenas, commonly known as the 
European green crab. Neither states have established populations, but individuals of 
the species have been found in both states. Hawaii and Washington have voiced 
concern over the likely arrival and establishment of the species (Global Invasive 
Species Database). 
 

Co‐establishment of the above AIS, as well as the establishment of hundreds 

of others within both Washington and Hawaii clearly illustrates the need for 

  29

improved policies, regulations, and practices within both states. Hawaii and 
Washington policies regarding ballast and hull fouling have several similarities, yet 
also have key differences.  
 

 

Ballast water regulation similarities include the stringent reporting 

requirements, mandatory ballast water management plans on board all vessels 
which enter state waters, the requirement for open‐ocean ballast water exchange 
outside of the exclusive economic zone of the state, and the resulting fines 
associated with violating any of the above requirements.  Although reporting 
requirements are nearly identical, Washington and Hawaii compliance rates vary 
greatly.  According to Third Biennial Report of the National Ballast Information 
Clearinghouse, compiled by the Smithsonian Environmental Research Center, the 
most recent compliance data (2004‐2005) indicates an 88.6% compliance rate on 
the West Coast (Washington, Oregon, and California), versus 76.1% compliance rate 
in Hawaii. Compliance on the West Coast increased 19.0% during 2004‐2005, while 
there was a 15.4% decrease in compliance in Hawaii. Hawaii was the only area of the 
United States showing a decrease in ballast water reporting compliance 
(Smithsonian 5).  Key differences between Washington and Hawaii relate to a lack of 
details within Hawaiian policy. This lack of detail may have a connection to the lack 
of compliance as recorded by the Smithsonian.  
 
5.1: Ballast 
Current ballast water practices, ranging from treatment to regulations, have 
several key problems. First, utilizing ballast water exchange as the currently 

  30

suggested method for reducing AIS has several drawbacks. The ability of a vessel to 
effectively remove and exchange all of its ballast is variable depending on the 
specific vessel (National Research Council 25). In the most efficient vessels it is still 
near impossible to remove all sediments and water from the bottom of the ballast 
tank, which results in remaining organisms. A vessel considered free of ballast 
typically contains 150 tons of residual water and mud, due to the fact that the 
nozzle which pumps water from each tank hangs several feet above the tank floor 
(Harder 235). Exchange also does not remove organisms stuck to the sides or 
supports within the tank (Baskin 734).   
According to McCollin, Shanks, and Dunn, even though ballast water 
exchange creates an overall reduction in number and abundance of taxa found on 
board, this reduction was not consistent between tanks and voyages.  This same 
research also showed that even with a reduction in number of species found in 
water, there were also several incidences of an increase in potentially harmful 
species (536).  Also, safety concerns arise when the vessel has to flush its ballast 
water mid‐transit. Ballast's purpose is to help stabilize the ship during transit, and 
the removal of this stability creates a window of increased danger due to capsize 
(Gramling 22).  At this point, most regulations allow for ballast water exchange to be 
bypassed if the vessel captain feels conducting the exchange would be dangerous 
for the vessel or any crew on board.  No secondary opinions on safety are required, 
and no explanation other than reporting that exchange was bypassed for safety is 
necessary (Endresen 615).  The issue of shipping patterns also raises concern. A 

  31

large proportion of vessel trips do not cross the necessary depth and off shore 
distance for effective exchange (Endresen 618).  
The current mechanisms of regulation also have several problems. Current 
regulations create a confusing, overlapping, and possibly conflicting reporting 
situation, which is problematic for the shipping industry (U.S Coast Guard 2006, 5).  
Having state regulations that differ from federal regulations and proposed 
international regulations makes compliance exceptionally difficult. The current 
voluntary status of ballast water management has resulted in low compliance rates. 
According to the National Ballast Information Clearinghouse, compliance to 
voluntary reporting was only 30.4% during the first 24 months that reporting 
requirements were in effect. About one half (51.2%) of the reporting ships that 
discharged ballast water performed some degree of ballast water exchange (U.S. 
Coast Guard 2001). According to existing U.S. regulations, exchange is not 
suggested, even on a voluntary basis, if a vessel does not travel outside of the U.S. 
EEZs, or Exclusive Economic Zones (NISA).  This is problematic due to the fact that 
travel from port to port within the U.S. has the potential of spreading AIS. Travel 
between San Francisco Bay, which is heavily impacted by AIS, to the Puget Sound, 
which is only moderately impacted by AIS, has the potential of environmental and 
economic harm for the Puget Sound area. 
 

Also, a lack of discharge standards has created a situation of standstill in the 

development and implementation of new ballast water treatment technologies.  In 
order to obtain greater environmental benefits, state of the art ballast water 
treatment technology needs to be widely available and affordable, however, 

  32

manufacturers are unwilling to take the business risks necessary to begin 
commercially producing treatment systems unless they know the discharge 
standards those systems need to meet (U.S Coast Guard 2006, 6).   
 

All vessels of the United States’ Armed Forces are exempt from ballast 

regulations in Washington and Hawaii. This does not mean military vessels are not 
conducting ballast water exchanges or following the suggested guidelines, it just 
means they are exempt from reporting, resulting in a lack of knowledge in this area.  
 
5.2: Hullfouling 
Hull fouling regulation issues are hard to identify due to the fact that there is 
currently little to no regulation relating to hull fouling and the transmission of 
aquatic invasive species. Inconsistent regulations and rules regarding ablative paints, 
anti‐fouling systems, and boat cleaning, as mentioned previously, create a confusing 
atmosphere for both private and commercial vessel operators. Lack of reliable 
scientific data regarding AIS and hull fouling is also an issue.  
The above mentioned military exemption is particularly pertinent to 
Washington and Hawaiian policies due to the heavy military presence in both states. 
It is reasonable to expect that this exemption will remain in place for hull fouling 
regulations as well as the already written ballast water regulations. The only 
documented direct transmission of invasive species from Washington to Hawaii was 
the previously mentioned blue mussel, transferred via hull fouling from Puget Sound 
Naval Shipyard in Bremerton, WA to Pearl Harbor in Honolulu, HI.   
 

  33

6. Suggested Improvements 
The key to reducing and preventing AIS transmission through the vectors of 
ballast and hull fouling is creating a consistent set of policies, therefore creating a 
maritime shipping environment that is easy to comply with.  Moving towards 
consistency will be key to success. To move towards this goal, the following 
recommendations are suggested. 
 

Hawaii and Washington could improve in both the ballast and hull fouling 

segments of maritime transportation, however, the hull fouling component is a 
more prominent issue at this point in time. The complete lack of regulations 
regarding AIS transportation via hull fouling is detrimental to both states’ economic 
and environmental situations.  
 

In order to improve the ability to regulate hull fouling issues, it strongly 

suggested that the legislatures from both Hawaii and Washington pressure the 
United States to sign on to the IMO International Convention on the Control of 
Harmful Anti‐fouling Systems on Ships. Creating a national standard for the use of 
ablative paints and regulating the anti‐fouling technologies available will create a 
base that will allow for long term AIS management policies and goals. Without 
consistent standards relating to ablative paints and anti‐fouling mechanisms, it is 
difficult to set realistic policies.  
 

In addition to the issues with ablative paints, it is also important to focus 

regulations on activities that can reduce initial AIS transmission. Emphasis should be 
placed on preventative techniques. The first suggested preventative technique is to 
restrict time in port to essential operations only, such as cargo operations, fueling, 

  34

and loading supplies. For vessels that intend longer terms stays, such as cargo 
barges, crane barges, drilling platforms, floating drydocks, and decommissioned 
military and personal vessels, it is suggested for states to develop quarantine 
procedures for vessels prior to docking, or to require a mandatory out of water 
cleaning prior to permanent or long term docking.  
 

Hawaii and Washington could improve ballast policies by passing legislation 

that is consistent with International Maritime standards. The IMO Ballast Water 
Convention represents 10 years of consensus building and provides a detailed and 
realistic plan of action to battle AIS. The United States has been involved in setting 
the regulations proposed by the IMO, but has not ratified the convention. Hawaii 
and Washington choosing to pass state standards consistent with the IMO would be 
an indicator to national level government that ratifying the convention is desired.  
The BWM Convention will not go into effect until it has 30 signatories, representing 
35% of world shipping tonnage. World shipping tonnage is a measure of total 
volume of ships operating worldwide, irrespective of actual cargo carried.  If the U.S. 
were to ratify the convention, this would represent approximately 15% of world 
shipping tonnage (IMO 2011), and would be enough to put the IMO Convention into 
action.  Ratification of the BWM convention is supported by several key 
organizations involved in shipping, including the Coast Guard, American Association 
of Port Authorities, the Shipping Industry Ballast Water Coalition (which includes 
representative from several major shipping corporations), and several other industry 
related groups (American Association of Port Authorities, Coast Guard 2002, Coast 
Guard 2004, Coast Guard 2005, Shipping Industry Ballast Water Coalition). 

  35

Adopting a ballast water treatment standard at a state level, preferably by 
adopting a treatment standard consistent with the IMO, would help encourage 
design and implementation of new ballast water treatments.  Allowing for 
adjustments to the standard based upon available technologies is also important.  
The battle over which should come first, the treatment standard or the preferred 
treatment technique needs to be resolved. Waiting for treatment techniques to be 
developed has been slow, for reasons discussed earlier, and may be expedited with 
the phased implementation of treatment standards. It is also important that any 
standards set be required for any travel, even if within the EEZs of each individual 
state or climate zone. Preventing transmission of AIS from port to port will be key in 
slowing down the spread of species.  
Also important for both Washington and Hawaii is to require preventative 
measures in ballast water management plans. Both states currently require all 
vessels to have a ballast water management plan on board, but do not have any 
requirements for what is found in the plan. Emphasizing the need to reduce initial 
AIS intake in ballast will allow for less burden to be placed up treatment 
technologies or exchange. Such preventative measures include: minimizing 
ballasting in ports and coastal areas, avoiding ballast intake at night, and avoiding 
ballast uptake in ‘hot spots’, or areas near sewage outfalls  or have known AIS 
infestations (Globallast 2008).  
In order for these recommendations to become policy both states need to have 
increased funding dedicated to AIS. Both Hawaii and Washington have the 
information and potential for great improvements in policy and enforcement, 

  36

however, neither can do so without increased funding.  This funding could be used 
for education and outreach, creating a more communicative environment between 
marine vessel operators and managers and those working to reduce AIS 
introductions. Funding could also be used to increase vessel inspections, helping to 
close an information gap that forms from a self‐reporting system.  
 
7. Conclusion:  
 

Aquatic invasive species and the related dispersal by marine transportation 

is a global and ongoing problem. The lack of comprehensive and collaborative policy 
has resulted in a regulatory situation that is confusing and difficult to navigate for 
both private and commercial vessel owners and operators. Improvements to the 
policy and regulatory environment could result in increased effectiveness when 
battling aquatic invasive species. The comparison of Hawaii and Washington 
identifies a number of policy constraints and possibilities to ensure ecological and 
economic viability.  
Hawaii and Washington could both make individual or joint policy 
improvements, as listed above, that would result in an increased line of defense 
against the transmission of aquatic invasive species. However, without efforts on a 
larger scale, individual and even joint state changes are not going to result in a 
drastic reduction in invasive species transmissions and establishments. Creating 
consistent and thorough policies at a national and international level is going to be 
the necessary change in order to reduce AIS transmissions and the resulting 
economic and environmental impacts.  Modeling state ballast policies to match 

  37

those of the International Maritime Organization works towards a consistent 
international policy framework, and also places pressure on the United States to 
move towards those standards at a national level.  As there are no current best 
practices available for the prevention of AIS through hull fouling, it is suggested that 
Washington and Hawaii focus on creating consistent port based prevention efforts, 
allowing for initial protection while more research is completed and best practices 
can be established.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  38

Works Cited 
American Association of Port Authorities. “Ballast Water Management.  
Legislative Priorities. 01 January 2011 www.aapa‐ports.org 
 
"Anti‐Fouling Bottom Paint." Boat Paint and Marine Painting. Web. 18 Jan. 2011. 
<www.marinepainting.net/anti‐fouling‐bottom‐paint.html>.  
 
Bailey, Sarah A., Ian C. Duggan, Colin D.A. Overdijk, Philip T. Jenkins, and Hugh J.  
MacIssac. “Viability of invertebrate diapausing eggs collected from residual 
ballast sediment. Limnology and Oceanography. 48.4 (2003): 1701‐1710.  
 
Ballast Water Management. RCW 77.120. 30 June 2007.  
 
Ballast Water Management and Control‐ Reporting and sampling requirements.  
WAC 220‐77‐0900C.  
 
Baskin, Yvonne. “Curbing undesirable invaders.” BioScience. 46.10 (1996): 732‐ 
736. 
 
Buck, Eugene H. “Ballast Water Management to Combat Invasive Species.” CRS  
Report for Congress. (2005).  
 
Cangelosi, Allegra A.,  Nicole L. Mays, Mary D. Balcer, Euan D. Reavie, Donald M.  
Reid, Rochelle Sturtevant, and Xueqing Gao.   “The response of zooplankton 
and phytoplankton from the North American Great Lakes to filtration.” 
Harmful Algae 6 (2007): 547‐566. 
 
Carlton, James T., Donald M. Reid, and Henry van Leeuwen. “Shipping Study: The  
Role of Shipping in the Introduction of Non‐indigenous Aquatic Organisms to 
the Coastal Waters of the United States (Other than the Great Lakes) and an 
analysis of control options.”  NTIS Report #AD‐A294809 US Coast Guard 
Report # CG‐D‐11‐95. (1995). 
 
Center for Coastal Resources. Marine bioinvasions fact sheet: ballast water  
treatment options. 2006. MIT Sea Grant. 20 January 2011 
<http://massbay.mit.edu/resources/pdf/ballast‐treat.pdf> 
 
Champ, Michael A. “Marine Testing Board for certification of ballast water  
treatment technologies.” Marine Pollution Bulletin 44 (2002): 1327–1335. 
 
Coutts, A. D., K. M. Moore, and C. L. Hewitt. "Ships' Sea‐chests: an Overlooked 
Transfer Mechanism for Non‐indigenous Marine Species?" Marine Pollution 
Bulletin 46 (2003): 1504‐515. Print.  
 
Dobroski, Nicole A. “Aquatic invasive species and ballast water management.”  
  39

 
Discharge of Polluting Matter in Waters Prohibited., § RCW 90.48.080 (1987).  
Print. California State Land Commission.  
 
Eldredge, L. G., and J. T. Carlton. "Hawaiian Marine Bioinvasions: A Preliminary 
Assessment." Pacific Science 56 (2002): 211‐12. Print.  
 
Endresen, Øyvind, Hanna Lee Behrens, Sigrid Brynestad, Aage Bjørn Andersen,  
and Rolf Skjong. “Challenges in global ballast water management.” Marine 
Pollution Bulletin 48 (2004): 615–623. 
 
Fofonoff, P. W., G. M. Ruiz, B. Steves, and J. T. Carlton. "In Ships or on Ships? 
Mechanisms of Transfer and Invasion for Nonnative Species to the Coasts of 
North America." Invasive Species (2003): 152‐82. Print.  
 
GloBallast. 10 Most Unwanted. 08 January 2011.  
<http://globallast.imo.org/poster4_english.pdf> 
 
GloBallast. Ballast Water News. 16 (2004): 1‐12.  
 
GloBallast. Stopping the ballast water stowaways. (2002).  
 
GloBallast. 2008. 23 December 2010 < http://globallast.imo.org> 
 
Godwin, L. S., L. G. Eldredge, and K. Gaut. The Assessment of Hull Fouling as a 
Mechanism for the Introduction and Dispersal of Marine Alien Species in the 
Main Hawaiian Islands. Bernice Pauahi Bishop Museum HawaiiBiological 
Survey‐ Bishop Museum Technical Report #28. Honolulu, HI, 2004. Print.  
 
Godwin, L. Scott. "Hull Fouling of Maritime Vessels as a Pathway for Marine Species 
Invasions to the Hawaiian Islands." Web. 5 Jan. 2011. 
<www.nmri.go.jp/main/cooperation/ujnr/24ujnr_paper_us/Environmental_
Science_and_Engineering/ESE_Godwin.pdf>.  
 
Godwin, L. Scott. Marine Invasive Species Transported by Vessel Hull Fouling:  
Potential Managment Approaches. Hawaii Biological Survey. Bernice Pauahi 
Bishop Museim. Web. 12 Jan. 2011. 
<www.pices.int/publications/presentations/pices_13/pices_13_s5/godwin_s
5.pdf>. 
 
Gramling, Jessica. Ballast water and shipping patterns in the Puget Sound:  
Considerations for siting of alternative ballast water exchange zones. 
Olympia, WA: Puget Sound Water Quality Action Team, 2000.  
 
Harder, Ben. “Stemming the tide.”  Science News. 161.15 (2002): 234‐236. 
 
  40

Hawaii Administrative Rules, Title 13, Department of Land and Natural Resources, 
Subtitle 4, Fisheries, Part IV Fisheries Resource Managment, Chapter 76, 
Non‐Indigenous Aquatic Species (2007). Print.  
 
Hawaii. The Department of Land and Natural Resources. Division of Aquatic 
Resources. State of Hawaii Aquatic Invasive Species Managment Plan. By 
Andrea D. Shluker. 2003. Print.  
 
"Hull Cleaning and Boat Washing | Clean Green Boating | Washington State  
Department of Ecology." Washington State Department of Ecology | Home 
Page | ECY WA DOE. Web. 20 Jan. 2011.  
<http://www.ecy.wa.gov/programs/wq/nonpoint/CleanBoating/hull.html> 
 
Interim ballast water discharge standard approval process. WA 220‐77‐09500A. 
 
International Maritime Organization. 22 January 2011. < www.imo.org> 
 
International Marine Organization (IMO). Focus on IMO: Anti‐fouling Systems. Rep. 
2002. Print.  
 
International Maritime Organization. 2008. International Convention on the Control 
of Harmful Anti‐fouling Systems on Ships.  
 
Kaluza, Pablo, Andrea Kolzsch, Michael Gastner, and Bernard Blasius. "The Complex  
Network of Global Cargo Ship Movements." Institute for Chemistry and 
Biology of the Marine Environment (2010): 1‐24. 
 
Library of Congress. Thomas Website. < http://thomas.loc.gov> 
 
Lewis, J. Hull Fouling as a Vector for the Translocation of Marine Organisms, Phase 3: 
The Significance of the Prospective Ban on Tributyltin Antifouling Paints on 
the Introduction and Translocation of Marine Pests in Australia. Report to 
the Department of Agriculture, Fisheries, and Forestry‐ Australia. Report No. 
2. Print.  
 
McCollin, Tracy, Aileen M. Shanks, and John Dunn. “The efficiency of regional  
ballast water exchange: Changes in phytoplankton abundance and diversity.” 
Harmful Algae 6 (2007) 531–546. 
 
Meyerson, Laura A., and Harold A. Mooney. "Invasive Alien Species in an Era of 
Globalization." Frontiers in Ecology and the Environment 5.4 (2007): 199‐208. 
 
Michin, D., and S. Gollasch. "Fouling and Ship's Hulls: How Changing Circumstances 
and Spawning Events May Result in the Spread of Exotic Species." Biofouling 
19 (2003): 111‐22. Print.  
 
  41

National Ballast Information Clearinghouse (NBIC).Smithsonian Environmental  
Research Center. 05  January 2011 <http://invasions.si.edu/nbic/> 
 
National Invasive Species Act. Pub. Law 104‐332. 14 November 1996. 
 
National Oceanic and Atmospheric Association (NOAA). National Oceanographic  
Data Center. 05 January 2011. <www.noaa.gov> 
 
National Research Council. Stemming the tide: controlling introductions of  
nonindigenous species by ships’ ballast water. Washington, D.C.: National 
Academy Press, 1996.  
 
Nehring, S. "After the TBT Era: Alternative Anti‐fouling Paints and Their Ecological 
Risks." Senckenbergiana Maritima 31.2 (2001): 341‐51. Print.  
 
Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990. USC 4701.  
29 December 1990. 
 
Prince William Sound Regional Citizens’ Advisory Council. Ballast water  
treatment methods‐ fact sheets. 2005. 8 January 2011  
<http://www.pwsrcac.org/resources/reportsavail.html> 
 
Puget Sound Action Team. Ballast Water Management in Washington State: a  
report to the State Ballast Water Work Group to the 2007 Regular Session of 
the Washington State Legislature. March 2007.  
 
Railkin, A. I. Marine Biofouling: Colonization Processes and Defenses. Washington, 
DC: CRC, 2004. Print.  
 
Savarese, Jason. "Preventing and Managing Hull Fouling: International, Federal,  
and State Laws and Policies." Proc. of 14th Biennial Coastal Zone 
Conference, New Orleans, Louisiana. Print. 
 
Shipping Industry Ballast Water Coalition. Letter in response to docket no. USCG‐ 
2001‐8737—Potential Approaches to Setting Ballast Water Treatment 
Standards. 29 June 2001.  
 
Showalter, Stephanie, and Jason Savarese. The Existing U.S. Legal Regime to Prevent 
the Hull Transport of Aquatic Invasive Species. White Paper Prepared for the 
California Sea Grant Law Center. 2005. Print.  
Smithsonian Environmental Research Center. “Invasive Species.” 7 January  
2011. <www.serc.si.edu/watershed/may2001/invasivespecies.htm> 
 
Smithsonian Environmental Research Center. “Marine Invasions Research Lab:  
Hull Fouling.” 21 January 2011. 
<www.serc.si.edu/labs/marine_invasions/vector_ecology/fouling.aspx> 
  42

 
Takata, L., M. Falkner, and S. Gilmore. California State Lands Commission Report on 
Commercial Vessel Fouling in California: Analysis, Evaluation, and 
Recommendations to Reduce Nonindigenous Species Release from the Non‐
Ballast Water Vector. Report to the California State Legislature. Print.  
 
Tang, Zhijian, Michael A. Butkus, and Yuefeng F. Xie.  “Crumb rubber Filtration: A  
potential technology for ballast water treatment.” Marine Environmental 
Research 61 (2006): 410–423. 
 
United States Coast Guard. Report to Congress on the Voluntary National  
Guidelines for Ballast Water Management. November 2001.  
 
United States Coast Guard. Testimony of Richard Steinke, Executive Director,  
Port of Long Beach, Chairman, American Association of Port Authorities, 
before a Joint Hearing of the House Transportation and Infrastructure 
Subcommittees on Coast Guard and Maritime Transportation and Water 
Resources and the Environment. 15 May 2002.  
 
United States Coast Guard. Testimony of Joseph J. Cox on behalf of the Shipping  
Industry Ballast Water Coalition regarding “Ballast Water Management: New 
International Standards and National Invasive Species Act Reauthorization” 
before the Coast Guard and Maritime Transportation and Water Resources 
and Environment Subcommittees of the House Transportation and 
Infrastructure Committee. 25 March 2004.  
 
United States Coast Guard. Testimony of Donald L. O’Hare Vice President of the  
World Shipping Council on Reduction of Air Pollution from Ships and Ballast 
Water Management before the Subcommittee on Coast Guard and Maritime 
Transportation of the House Committee on Transportation and 
Infrastructure. 11 July 2006.  
 
United States Department of Homeland Security and United States Coast Guard.  
Statements of Rear Admiral Thomas Gilmour on Ballast Water Management 
and the Ballast Water Management Act of 2005, S. 363 before the 
subcommittee on Committee on Commerce, Science, and Transportation, 
U.S. Senate. 15 June 2005.  
 
Washington Department of Fish and Wildlife. Washington State Ballast Water  
Program. 10 January 2011. <http://wdfw.wa.gov/fish/ballast/ballast.htm> 
 

  43